
Evolving Deep Forest with Automatic Feature
Extraction for Image Classification Using

Genetic Programming

Ying Bi, Bing Xue and Mengjie Zhang

School of Engineering and Computer Science,
Victoria University of Wellington, Wellington 6140, New Zealand

{Ying.Bi, Bing.Xue, Mengjie.Zhang}@ecs.vuw.ac.nz

Abstract. Deep forest is an alternative to deep neural networks to use
multiple layers of random forests without back-propagation for solving
various problems. In this study, we propose a genetic programming-based
approach to automatically and simultaneously evolving effective struc-
tures of deep forest connections and extracting informative features for
image classification. First, in the new approach we define two types of
modules: forest modules and feature extraction modules. Second, an en-
coding strategy is developed to integrate forest modules and feature ex-
traction modules into a tree and the search strategy is introduced to
search for the best solution. With these designs, the proposed approach
can automatically extract image features and find forests with effective
structures simultaneously for image classification. The parameters in the
forest can be dynamically determined during the learning process of the
new approach. The results show that the new approach can achieve better
performance on the datasets having a small number of training instances
and competitive performance on the datasets having a large number of
training instances. The analysis of evolved solutions shows that the pro-
posed approach uses a smaller number of random forests over the deep
forest method.

Keywords: Evolutionary Deep learning, Genetic Programming, Deep
Forest, Image Classification, Feature Extraction

1 Introduction

In recent years, deep learning algorithms have achieved a big success in many
applications [1]. Image classification is one of the important application areas
of deep learning. Many famous deep neural networks (DNNs) have been de-
veloped, such as AlexNet, GoogleNet, VGGNet, ResNet, and DenseNet [2–4].
These methods have achieved impressive performance on many large image
classification datasets. However, these methods have a number of important
limitations. First, rich domain expertise is needed to design a powerful DNN
model/architecture. For example, AlexNet and VGGNet are both convolutional
neural networks (CNNs) but have different structures and classification perfor-
mance. Second, DNNs typically require a large amount of training data to train

2 Y. Bi et al.

a model, which often has a huge number of parameters. For example, AlexNet
has over 60 million parameters and VGGNet has 138 million parameters, which
can only be trained using thousands of training instances. With such parameters,
these models cannot be directly applied for solving the tasks with limited train-
ing data. In many real-world applications, such as medical applications, the data
are difficult or expensive to collect. Learning from limited training data, i.e., also
know as few-shot or zero-shot learning [5], for solving a task is important, but
the current common DNNs cannot directly solve. Furthermore, interpretabil-
ity is another problem with them. It is difficult to understand/interpret these
models (or the learned features) why they are effective for solving a task. How-
ever, in many industrial applications, interpretability is a critical factor for the
acceptance and adoption of the model/method.

Motivated by these limitations, many other types of deep models have been
developed, such as deep forest (also known as gcForest) [6]. Deep forest builds a
deep model based on random forest using a cascade structure and a multi-grained
scanning. The cascade structure allows it to have multiple layers of random
forests to learn a complex representation of the data for solving a problem.
The cascade structure is shown in Fig. 1. The multi-grained scanning scheme
uses a sliding window to scan the raw features from sequence data or image
data to form a feature vector as the inputs of random forests. Deep forest has
been employed to solve many tasks and achieved promising results [6]. However,
the deep forest uses fixed structures and parameters of random forests at each
layer and the features used are simple without complex transformation. This may
limit the performance of deep forest for image classification, especially particular
images, e.g., texture images. Although many variants of deep forests have been
developed, none of them addressed these two issues.

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Level 1 Level 2 Level N

Ave.
Input feature vector

Max
Final prediction

Concatenate

Fig. 1. The cascade forest structure [6].

In this paper, an evolutionary deep forest (EvoDF) approach is developed to
automatically extract domain-specific features and find appropriate connections
of random forests with effective parameters simultaneously for image classifica-
tion. Instead of manually designing the structure of forests and choosing its key
parameters, EvoDF can automatically find effective structures and parameters
of the random forests in deep forest. Feature extraction modules are proposed
to perform region selection, descriptor selection and feature description. They
allow EvoDF to find effective features, such as local binary patterns (LBP), to
solve typical image classification tasks, such as texture classification. Different
from deep forest, EvoDF encodes solutions as trees with variable lengths and

Evolutionary Deep Forest 3

uses a population to search for the best solution with fewer parameters. In the
experiments, EvoDF achieves better results on the datasets of a small number
of training instances and competitive results on the datasets of a large number
of training instances than deep forest. Further analysis shows that the solution
found by EvoDF has a small number of random forests than those in deep forest.

2 Related Work

Evolutionary Algorithms: Evolutionary algorithms can search for the best
solutions via a number of generations based on genetic beam search. Evolu-
tionary algorithms are known for their powerful global search ability and non-
differentiable requirement [7]. They have been applied to many tasks in machine
learning, such as optimizing the architectures of DNNs [8–10] and finding the
optimal model of ensemble [11–13]. However, no evolutionary algorithms have
been developed to optimize the structure of deep forest. In this study, we use
an evolutionary algorithm, i.e., genetic programming (GP) [14], to achieve auto-
matically search for the structure of forests, extract features and select suitable
parameters of the forests for image classification.

Feature Extraction: Feature extraction is essential for solving image classi-
fication tasks. Traditional methods to feature extraction are local binary patterns
(LBP) [15], histogram of oriented gradients (HOG) [16], and scale-invariant fea-
ture transform (SIFT) [17]. In recent decades, automatically extracting/learning
features from images becomes increasingly popular. Many DNNs can achieve this
by learning deep features. More related work can be found in [18]. In deep for-
est, the features are from images via multi-grained scanning, which may not be
effective for classifying particular images, such as texture images. Therefore, we
add a feature extraction process into deep forest to achieve automatic feature
extraction for image classification.

Ensemble Methods: Deep forest is a typical ensemble method, using mul-
tiple decision trees to perform prediction. Ensemble methods train multiple base
learners using traditional machine learning algorithms for solving a task [19].
Typically, an ensemble of diverse and accurate classifiers can obtain a better
generalization performance than a single classifier [20]. But the diversity is an
open issue in ensemble learning [21]. Various ensembles have been developed
such as deep super learner [22] and autostacker [11], which make the ensemble
model deeper. Recent applications of ensemble methods in machine learning and
deep learning can be found in [12, 20, 23].

Deep Forest Variants: Recently, several variants of deep forests have been
developed. Zhou et al.[24] extended the deep forest method to generate compact
binary code for hashing in image retrieval. Zhu et al. [25] proposed an efficient
training framework of deep forest on distributed task-parallel platforms. Zhang
et al. [26] implemented distributed deep forest and tested it on an extra-large
dataset of cash-out fraud detection. As a recently proposed method, deep forest
is still at early stage and has large research potential. In this study, we aim to
improve the performance of deep forest for image classification.

4 Y. Bi et al.

3 The Proposed Approach

In this section, we will describe the proposed approach: evolutionary deep forest
(EvoDF). First, we will introduce two main modules, i.e., the forest module
and the feature extraction module. Then the encoding and search strategy are
presented, followed by the description of the overall algorithm.

3.1 Forest Modules

In deep forest, each layer/level has a predefined number of random forests. To
allow EvoDF to search the structures of random forests, we relax this predefined
structure of random forests by designing a single module and extending it to deep
or wide modules. In EvoDF, the single module is constructed using one random
forest, as shown in Fig. 2. The output of the single module is the concatenation of
the input and the predictions of the random forest. The predictions of a random
forest are the average scores of multiple trees in each class for a classification
problem. For example, if the problem has c classes and the dimension of the
input feature vector is f (the number of features in the dataset), the dimension
of the output is c + f .

Forest 1
Max. depth: m1

No. trees: n1

ConcatenateIn
p

u
t f

e
at

u
re

 v
e

ct
or

Single Module

Forest 1
Max. depth: m1

No. trees: n1

Deep Module

Forest t
Max. depth: mt

No. trees: nt

Concatenate Concatenate

Forest 1
Max. depth: m1

No. trees: n1

Forest t
Max. depth: mt

No. trees: nt

Concatenate

Input feature
vector 1

Input feature
vector 2

Wide Module

Wide Module

Deep Modules

Single Modules

Wide Module

Deep Module

Wide Module

 Module Connection

Fig. 2. Forest modules.

The single module can be extended to a deep or wide module, as shown in Fig.
2. The deep module is constructed using multiple single modules sequentially.
The output of a single module is the input of the next single module. The
final output dimension of a deep module is f + t × c, where t indicates the
number of single modules. The wide module is constructed using single modules
parallelly. Every single module has various input feature vectors, which can be
from different feature extraction modules introduced in the following subsections.
The final output dimension of a wide module is

∑t
i=1(fi+c), where fi represents

the input dimension of the ith single module. The deep and wide modules can
connect with each other, e.g., using the output feature vector of one module as
the input feature vector of another module. This leads to an easy extension of a
complex model, which can be constructed by EvoDF.

It is known that the diversity of base learners are important for constructing
an ensemble with good generalization ability [19]. The diversity can be enhanced
by data sample manipulation, input feature manipulation, learning parameter
manipulation, and output representation manipulation [6, 19]. In these forest
modules, random forest and extremely randomized trees are employed. These
two types of random forests can be automatically selected to construct a module.
The key parameters, the number of trees and the maximum number of tree depth

Evolutionary Deep Forest 5

of each forest, can be automatically determined during the learning process of
EvoDF, which will be introduced in the later sections. It is also noted that the
input feature vectors for the forest in the wide module are different, which further
enhances the diversity.

3.2 Feature Extraction Modules

In deep forest, the inputs of random forests are raw data/images or the concate-
nation of the predictions and raw data. This may not be effective for solving
particular image classification tasks, e.g., texture classification. In the EvoDF
method, three new feature extraction modules are developed to extract infor-
mative features from images. The three possible feature extraction modules are
illustrated in Fig. 3 and Fig. 4.

LBP

SIFT

Region selection
Descriptor
 selection

Feature
description

LBP,
HOG,
SIFT,

Concatenate

Input 28X28 image

Single Module

Whole image

 Concatenation

(x, y) w

h

w

h

Fig. 3. One possible feature extraction module.

The first feature extraction module (module 1 in Fig. 4) consists of
descriptor selection and feature description. Four commonly used descriptors,
i.e., LBP, HOG, SIFT, and Concatenation [27], are employed to transform an
image into features. Descriptor selection is to select one of the four descriptors
and feature description is to extract features using the selected descriptor. The
output of the feature extraction module is a feature vector. The second feature
extraction module (module 2 in Fig. 4) has an additional process: region
selection, which aims to select a small key region from a large input image.
From the selected region, image features can be extracted. To select a region,
the position of the top-left point of the region (x, y) and the size of the region
(w, h) are needed. These parameters can be automatically selected during the
learning process of EvoDF. The third feature extraction module (module 3
in Fig. 4) concatenates the features produced by modules 1 or 2 into a feature
vector. It can produce a combination of various features.

Input image Selected descriptor Feature vector

Region selection Selected descriptor Feature vectorInput image

Feature extraction module 1

Feature extraction module 2

Feature extraction module 3
Feature extraction module 1 or 2

Feature extraction module 1 or 2
Concatenation Feature vector

Fig. 4. Feature extraction modules.

3.3 Encoding and Search Strategy

The forest modules and feature extraction modules are connected and repre-
sented using a tree structure. A potential advantage is that a tree can be easily

6 Y. Bi et al.

extended to be deeper or broader. The encoding of a solution with forest modules
and feature extraction modules is based on strongly typed genetic programming
[28]. An example solution and its corresponding encoding are shown in Fig. 5.

In this encoding, the internal nodes are functions/models, including the func-
tions in the feature extraction modules and forest modules. These functions are
region selection functions, image descriptors (LBP, HOG, SIFT, and Concatena-
tion), single module, random forest, combine, and average (average2, average3
and average 4). The random forest function is employed after the forest mod-
ules, which directly returns the score of each class for a classification problem.
The combine function is used in the wide forest module to combine the output
of several forests and their predictions. The combine function combines two or
three single modules. The average function is used as the root node, where the
predictions of various random forests are averaged and the class label is obtained
according to the maximum score. In EvoDF, the average function can connect
with two, three or four random forests. It is noted that the random forest can be
replaced by extremely randomized trees during the learning process of EvoDF.

Deep module:
Three forests

(m3, n3; m4, n4; m5, n5)

Feature extraction
module: LBP

Region selection
(x1, y1, w1, h1)

 Image

Random forest
(m1, n1)

Feature extraction
module: HOG

Region selection
(x2, y2, w2, h2)

Image

Feature extraction
 module: SIFT

Image

Wide module:
Two forests

(m6, n6; m7, n7)

Random forest
(m2, n2)

Average and obtain the index of max

Prediction

An example solution with forest modules and feature extraction modules

Average2

Random
forest

Single
module

Single
module

Single
module

Tree-based encoding

LBP

Region
Selection

Image x1 y1 w1 h1

m5

n5

m4
n4

m3

n3

m1
n1

Random
forest

Single
module

HOG

Region
Selection

Image x2 y2 w2 h2

m6

n6

m2
n2

Single
module

SIFT

Image

m7

n7

Combine

Fig. 5. An example tree/structure with forest modules and feature extraction modules
and its encoding in the proposed EvoDF approach.

The leaf nodes are parameters and the input image. The parameters are the
coordination (x, y) of the top-left point of the selected region, the size (width w
and height h) of the selected region, the number of trees (m) in forests, and the
maximum tree depth (n). In the EvoDF method, x is in the range of [0, W −10],
y is in the range of [0, H − 10], w and h are in the range of [10, 20], where W
indicates the width of the image and H indicates the height of the image. With
these settings, region selection functions can select a region with a size from
10× 10 to 20× 20. The range of m is [50, 1000] with a step of 50. The range of
n is [10, 100] with a step of 10.

In EvoDF, a number (population) of trees/solutions are randomly generated
by selecting functions to form the internal nodes and selecting parameters from
the predefined ranges to form the leaf nodes. Each tree is evaluated on a train-
ing set to obtain its classification performance using the k-fold cross-validation
or the hold-out method. Then better trees are selected and the mutation and
crossover operations are employed to generate new trees from the selected trees.
The crossover operation swaps two branches of two trees based on a selected node

Evolutionary Deep Forest 7

to generate two new trees. The mutation operation replaces the branch of a tree
based on a selected node with a new generated branch. These two operations can
change the depths of trees, e.g., from wide to deep. The mutation operation can
introduce new branches into the current population. In addition, the functions
and parameters of a tree can also be changed by these two operations, leading
to a search towards the best tree/solution.

3.4 Algorithm Procedure

Training Process: The training/learning procedure of EvoDF is described in
Algorithm 1. In this procedure, a population of solutions are generated and eval-
uated on the training set Dtrain. In the evaluation procedure, the classification
performance of the tree/solution is calculated using the k-fold cross-validation or
hold-out methods. Then the tree with the best performance is recorded. A selec-
tion method is used to select better trees for crossover or mutation. The better
trees may have better forest modules or feature extraction modules, which are
inherited to the next generation. Then a new population of trees is generated.
The overall process is repeated until the maximum number of generation (G) is
reached. Finally, the best solution is returned and tested on a test set.

Algorithm 1: Algorithm Training Procedure

Input : Dtrain: the training set.
Output : Best Model: the best solution.

1 P0 ← Initialise a population of solutions;
2 g ← 0;
3 while g < Maximal number of generations do
4 Evaluate Pg on Dtrain using the k-fold cross-validation or hold-out

methods;
5 Update Best Model based on Pg;
6 Select better solutions from Pg using a selection metod;
7 Pg+1 ← New solutions generated using crossover and mutation;
8 g ← g + 1;

9 end
10 Return Best Model.

The parameters for EvoDF are the population size, the maximum number of
generations, the mutation rate, the crossover rate, and the selection method. It
should be noted that the number of parameters for EvoDF is smaller than that
of deep forest or DNNs, as listed in [6]. Furthermore, the parameter settings for
EvoDF can follow the commonly used settings of GP [27, 12]

Test Process: In the test process, the random forest in the best solution is
trained using Dtrain and the solution is tested on the test set. The accuracy of
the test set is reported. It should be noted that the test set has never been used
in the training or learning process.

8 Y. Bi et al.

4 Experiments and Results

4.1 Configuration

In this section, we compare the proposed EvoDF approach with deep forest
(gcForest) and several other algorithms. The settings of most comparison al-
gorithms refer to [6]. In EvoDF, the population size is 100 and the maximum
number of generation is 20. Note that we use a smaller number of generation
due to the high computational cost. The crossover rate is 0.5 and the mutation
rate is 0.5. A larger mutation rate than the commonly used one is expected to
increase the diversity of the population. We use the same parameter settings for
EvoDF on all the datasets for generality. For the datasets having a small num-
ber of training instances, 3-fold cross-validation on the training set is used in the
learning process of EvoDF (line 4 of Algorithm 1) to improve the generalisation
performance. For the datasets having a large number of training instances, the
hold-out method is used in the learning process of EvoDF. The training set is
split into two subsets, one for training random forests and one for calculating the
accuracy of the random forests in the fitness evaluation process. It is noted that
evolutionary algorithms often run 30 or 50 times and report the average results.
However, many existing image classification methods often report the results
of one run due to the high computational cost. Therefore, the experiments of
EvoDF run five independent times and the averaged results are reported.

Six different datasets are employed in the experiments. These datasets are
ORL [29], Extend Yale B [30], SCENE [31], KTH [32], MNIST [33], and CIFAR-
10 [34]. These datasets represent a variety of image classification tasks, i.e., object
classification, face recognition, scene classification, and texture classification,
aiming to demonstrate the effectiveness of EvoDF on a wide range of image
classification tasks with the same parameter settings.

4.2 Classification Results

Face Recognition: ORL [29] is a face recognition dataset, having 400 images
in 40 classes. Each class has 10 images. Following the settings in [6], 5/7/9 images
are used for training and the remaining images are used for testing, respectively.
Table 1 compares the test accuracy of EvoDF and five baseline algorithms. The
results of the baseline methods are from [6]. From Table 1, we can find that
the proposed EvoDF method achieves better results than any of the baseline
methods, including gcForest, using various numbers of training instances. The
performance of EvoDF does not degrade significantly when the number of train-
ing instances is decreased. Compared with other baseline methods, EvoDF is
less affected by reducing the number of training instances.
Face Recognition: Extend Yale B [30] contains 2,414 facial images sampled
from 38 different people under various illumination conditions. In the experi-
ments, we randomly select 10/20/30 images for training and the remaining im-
ages for testing, respectively. Two gcForests, one with four forests and one with
eight forests at each level, are used for comparisons. The random forest and the

Evolutionary Deep Forest 9

Table 1. Comparison of test accuracy (%) on ORL

5 images 7 images 9 images

EvoDF 97.00 (96.30±0.57) 97.50 (97.17±0.46) 100 (99.0±1.37)
gcForest 91.00 96.67 97.50

Random Forest 91.00 93.33 95.00

CNN (five layers) 86.50 91.67 95.00

SVM (rbf kernel) 80.50 82.50 85.00

kNN (k=3) 76.00 83.33 92.50

architecture of CNN are the same as that in [6]. The batch size of CNN is set to
10, 20 and the number of epochs is set to 50, 100, respectively. The SVM with a
linear kernel achieves better performance than with an RBF kernel. The number
of neighbours in k -NN is tuned and the best results obtained when k=1.

The results on the Extend Yale B dataset are listed in Table 2. The EvoDF
approach achieves better results than any of the baseline methods using 20 or
30 training images. In the first case, EvoDF achieves worse results than SVM
and better results than the remaining algorithms. The results show that EvoDF
achieves better results than gcForest with four or eight forests at each level.

Table 2. Comparison of test accuracy (%) on Extend Yale B

10 images 20 images 30 images

EvoDF 81.36 (80.66±0.86) 95.37 (94.09±1.33) 98.29 (97.93±0.47)
gcForest (8 forests) 72.21 91.71 96.88

gcForest (4 forests) 72.06 91.05 96.11

Random Forest 75.44 91.47 96.65

CNN (20, 100) 69.96 86.96 94.94

CNN (10, 50) 71.52 92.19 94.31

SVM (linear kernel) 82.19 92.55 95.25

kNN (k=1) 39.92 54.57 62.46

Scene and Texture Classification: The SCENE [31] dataset has 3,859 natu-
ral scene images of 13 classes. The images are sampled under different conditions
and have high image variations. The KTH [32] dataset is a texture classification
task of 10 classes. The total number of images is 810. The images are sampled
in nine scales with three poses under four illumination conditions. In the experi-
ments, 100 images per class of the SCENE dataset are used for training and the
remaining images are used for testing. For KTH, 40 images per class are used
for training and the remaining images are used for testing. kNN uses k=1 on
SCENE and k=5 on KTH after tuning. CNN uses 20 batch size and 100 epochs.

The results obtained by EvoDF and the baseline methods on these two
datasets are listed in Table 3. The EvoDF method achieves better results than
any of the compared methods on these two datasets. Specifically, EvoDF in-
creases the accuracy by 14.42% on SCENE and by 11.95% on KTH. It is also
noticeable that EvoDF achieves better results than gcForest. The EvoDF ap-
proach can extract LBP and SIFT features, which are typically for texture, shape
and appearance description. This may increase the classification performance of
EvoDF on the texture and scene datasets.

10 Y. Bi et al.

Table 3. Comparison of test accuracy (%) on SCENE and KTH

Dataset SCENE (100 images) KTH (40 images)

EvoDF 67.96 (63.07±3.85) 87.80 (85.17±2.79)
CNN 53.54 75.85

gcForest (8 forests) 39.62 64.63

Random Forest 36.19 60.98

SVM (linear kernel) 19.42 41.46

kNN 22.78 36.34

MNIST [33] is the task of handwritten digit classification. It has 60,000 training
images and 10,000 testing images. In the learning process of EvoDF, 30,000
images of the training set are used to train forests and the remaining 30,000
images are used to evaluate. In the testing process, the full training set is used
to train the forests and the model is tested on the test set. The results of the
baseline methods are from the corresponding references on the same test sets.
The results are listed in Table 4. It can be found that the accuracy obtained by
EvoDF is very close to that by gcForest, i.e., 0.34% lower. The EvoDF approach
achieves better results than CascadeForest, deep belief net, deep forest-based
hashing, SVM, deep super learner, and random forest.

Table 4. Comparison of test accuracy (%) on MNIST

gcForest 99.26 [6]

LeNet-5 99.05 [6]

EvoDF 98.92 (98.83±0.10)

Deep Belief Net 98.75 [35]

SVM (rbf kernel) 98.60 [6]

Deep forest-based hashing 98.50 [24]

Deep super learner 98.42 [22]

CascadeForest 98.02 [6]

Random Forest 96.80 [6]

CIFAR-10 [34] is a complex object classification dataset. CIFAR-10 has 50,000
32 × 32 color training images and 10,000 colour testing images. In the experi-
ments, we use gray-scale images to reduce computational cost. In the training
process of EvoDF, 30,000 images of the training set are used for training and
20,000 images are used for evaluation. Table 5 lists the test accuracy of all the
methods. It can be found that EvoDF achieves better results than the random
forest, deep forest-based hashing, multilayer perceptron, logistic regression, and
SVM. The performance of EvoDF is inferior to state-of-the-art DNNs and a little
behind the gcForest (default). The performance of gcForest is further improved
by increasing grains and using gradient boosting decision tree (GBDT) [36] as
gcForest (gbdt) achieves better results than gcForest (default). The performance
of EvoDF can be further improved by using GBDT, or using a large number of
population size and generations, or using 3-fold cross-valuation in training. How-
ever, due to the limitation of computational resources, we have not tested the
performance of EvoDF under that configuration. In addition, it is noteworthy

Evolutionary Deep Forest 11

that EvoDF can achieve better results than gcForest or other methods on the
image classification datasets using a small number of training instances.

Table 5. Comparison of test accuracy (%) on CIFAR-10

ResNet 93.57 [3]

AlexNet 83.00 [2]

gcForest (gbdt) 69.00 [6]

gcForest (5grains) 63.37 [6]

Deep Belief Net 62.20 [37]

gcForest (default) 61.78 [6]

EvoDF 61.27 (60.84±0.33)

Deep forest-based hashing 55.90 [24]

Random Forest 50.17 [6]

Multilayer Perceptron 42.20 [38]

Logistic Regression 37.32 [6]

SVM (linear kernel) 16.32 [6]

5 Further Analysis and Discussions

5.1 Discussions of the Classification Results

From Tables 1-5, it can be found that the EvoDF achieves better results than
any of the baseline methods on the datasets having a small number of training
instances and comparable results on the datasets having a large number of train-
ing instances. The results indicate that EvoDF is effective for various types of
image classification tasks, especially when the training data is limited. Compared
with the original deep forest, the proposed EvoDF approach can automatically
search for the structures of deep forests, find appropriate parameters and select
effective features as the inputs of the forests. With these designs, the perfor-
mance of deep forest on image classification has been improved. Although the
performance of EvoDF on the large dataset, i.e., CIFAR10, is a little inferior,
the comparisons show the potential of EvoDF by automatically searching the
structures of forest and extracting features from images. To sum up, EvoDF is
suitable and effective for solving tasks with a small number of training instances,
such as in the medical, security, or biological domains.

It is also noted that the classification performance of gcForest and EvoDF
is worse than deep CNNs, i.e., ResNet and AlexNet, on the large dataset (CI-
FAR10). These deep CNNs are well-developed algorithms and the area of CNNs
for image classification has been developed for over ten years. These methods
require a large number of computing resources (GPU) to obtain the current per-
formance on the large datasets. In contrast, deep forest is a newly developed
algorithm and its potential has not been comprehensively investigated. The cur-
rent implementation of deep forest is based on CPU rather than GPU, which
may limit its performance. The area of deep forest still has a large research space
and needs further investigation in the future.

12 Y. Bi et al.

5.2 Analysis of the Evolved Solution

An example solution found by EvoDF is visualised to show what features are
extracted and why it achieves good performance. The best solution is evolved
on MNIST, as shown in Fig. 6. It achieves 98.92% test accuracy. It has three
branches and the final prediction decision is made from three random forests.
Each branch uses a particular feature extraction module to generate features
from the input image. The features include SIFT features, LBP features, HOG
features, and raw pixels. It is noted that each random forest uses different inputs
and has different parameters, which increases the diversity of the classifiers in the
ensemble. The solution shows that the connections between the forest modules
and the feature extraction modules are very flexible. For example, the output
of a single forest module and the output of feature extraction modules can be
concatenated to form the input of another random forest.

Average2

RF

Combine

Concatenate

Image

200
70

RF

RF

SIFT
850

100

950
30

RF

Combine

RS

Image 14 14 18 19

800
80

Combine

Concatenate

Image Image

RS

Image 3 8 14 16

ERF

HOG

850

20

Image

Combine

ERF

LBP
150

100

Image

SIFT

Image

SIFT

Image

RF: Random forest

ERF: Extremely randomized trees

RS: Region selection

Fig. 6. The solution found by EvoDF on the MNIST dataset.

Although EvoDF achieves slightly worse results than gcForest on MNIST,
the number of forests in the solution of EvoDF is much smaller than that in
gcForest. gcForest uses at least eight random forests at each level (it could use
more than 16 random forests), while the solution of EvoDF only uses seven
random forests totally. This indicates that EvoDF can improve the utilisation of
random forests, i.e., use a small number of random forests to achieve competitive
performance by finding an effective structure of forest and feature extraction.

6 Conclusions

In this study, we developed an evolutionary deep forest approach with auto-
matic feature extraction and structure search for image classification. Compared
with deep forest, the proposed EvoDF approach found effective connections of
forests with various parameters and extracted domain-specific features for image
classification. In addition, the new approach used fewer parameters than deep
forest and DNNs. The results showed that EvoDF achieved better performance
than deep forest and other algorithms on the datasets having a small amount
of training data and comparable performance on the datasets having a large
number of training data. Further analysis showed that EvoDF can find effective
connections of a small number of random forests to achieve competitive perfor-
mance. In the future, we will further improve the performance of this approach
by implementing it distributedly on large datasets.

Evolutionary Deep Forest 13

References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436 (2015)
2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-

volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778 (2016)

4. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent archi-
tectures of deep convolutional neural networks. arXiv preprint arXiv:1901.06032
(2019)

5. Wang, Y., Yao, Q., Kwok, J., Ni, L.: Few-shot learning: A survey. arXiv preprint
arXiv:1904.05046 (2019)

6. Zhou, Z.H., Feng, J.: Deep forest: towards an alternative to deep neural networks.
In: Proceedings of International Joint Conferences on Artificial Intelligence. pp.
3553–3559 (2017)

7. Al-Sahaf, H., Bi, Y., Chen, Q., Lensen, A., Mei, Y., Sun, Y., Tran, B., Xue, B.,
Zhang, M.: A survey on evolutionary machine learning. Journal of the Royal Society
of New Zealand 49(2), 205–228 (2019)

8. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Evolving deep convolutional neural net-
works for image classification. IEEE Transactions on Evolutionary Computation
(2019)

9. Bi, Y., Xue, B., Zhang, M.: An evolutionary deep learning approach using genetic
programming with convolution operators for image classification. In: Proceedings
of IEEE Congress on Evolutionary Computation. pp. 3197–3204 (2019)

10. Baioletti, M., Milani, A., Santucci, V.: Learning bayesian networks with algebraic
differential evolution. In: Proceedings of International Conference on Parallel Prob-
lem Solving from Nature. pp. 436–448 (2018)

11. Chen, B., Wu, H., Mo, W., Chattopadhyay, I., Lipson, H.: Autostacker: A compo-
sitional evolutionary learning system. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference. pp. 402–409 (2018)

12. Bi, Y., Xue, B., Zhang, M.: Genetic programming with a new representation to
automatically learn features and evolve ensembles for image classification. IEEE
Transactions on Cybernetics (2020)

13. Bi, Y., Xue, B., Zhang, M.: An automated ensemble learning framework using
genetic programming for image classification. In: Proceedings of the Genetic and
Evolutionary Computation Conference. pp. 365–373 (2019)

14. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT press, Cambridge (1992)

15. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

16. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
vol. 1, pp. 886–893 (2005)

17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60(2), 91–110 (2004)

18. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen,
M.: Deep learning for generic object detection: A survey. arXiv preprint
arXiv:1809.02165 (2018)

14 Y. Bi et al.

19. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman and
Hall/CRC (2012)

20. Sagi, O., Rokach, L.: Ensemble learning: A survey. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 8(4), 1–19 (2018)

21. Dietterich, T.G.: Ensemble methods in machine learning. In: Multiple Classifier
Systems. pp. 1–15. Springer (2000)

22. Young, S., Abdou, T., Bener, A.: Deep super learner: A deep ensemble for classifi-
cation problems. In: Proceedings of Canadian Conference on Artificial Intelligence.
pp. 84–95 (2018)

23. Ding, C., Tao, D.: Trunk-branch ensemble convolutional neural networks for video-
based face recognition. IEEE Transactions on Pattern Analysis and Machine In-
telligence 40(4), 1002–1014 (2017)

24. Zhou, M., Zeng, X., Chen, A.: Deep forest hashing for image retrieval. Pattern
Recognition (2019)

25. Zhu, G., Hu, Q., Gu, R., Yuan, C., Huang, Y.: Forestlayer: Efficient training of deep
forests on distributed task-parallel platforms. Journal of Parallel and Distributed
Computing (2019)

26. Zhang, Y.L., Zhou, J., Zheng, W., Feng, J., Li, L., Liu, Z., Li, M., Zhang, Z., Chen,
C., Li, X., et al.: Distributed deep forest and its application to automatic detection
of cash-out fraud. ACM Transactions on Intelligent Systems and Technology 10(5),
1–19 (2019)

27. Bi, Y., Xue, B., Zhang, M.: An effective feature learning approach using genetic
programming with image descriptors for image classification [research frontier].
IEEE Computational Intelligence Magazine 15(2), 65–77 (2020)

28. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation
3(2), 199–230 (1995)

29. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human
face identification. In: Proceedings of 1994 IEEE Workshop on Applications of
Computer Vision. pp. 138–142 (1994)

30. Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recogni-
tion under variable lighting. IEEE Transactions on Pattern Analysis & Machine
Intelligence (5), 684–698 (2005)

31. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene
categories. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition. vol. 2, pp. 524–531 (2005)

32. Mallikarjuna, P., Targhi, A.T., Fritz, M., Hayman, E., Caputo, B., Eklundh, J.O.:
The kth-tips2 database. Computational Vision and Active Perception Laboratory,
Stockholm, Sweden pp. 1–10 (2006)

33. LeCun, Y., Cortes, C., Burges, C.J.: The mnist database. URL http://yann. lecun.
com/exdb/mnist (1998)

34. Krizhevsky, A., Nair, V., Hinton, G.: The cifar-10 dataset. online: http://www. cs.
toronto. edu/kriz/cifar. html 55 (2014)

35. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Computation 18(7), 1527–1554 (2006)

36. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and
data mining. pp. 785–794 (2016)

37. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep., Citeseer (2009)

38. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Advances in neural
information processing systems. pp. 2654–2662 (2014)

