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Abstract—Feature extraction is essential for solving image
classification by transforming low-level pixel values into high-
level features. However, extracting effective features from images
is challenging due to high variations across images in scale,
rotation, illumination, and background. Existing methods often
have a fixed model complexity and require domain expertise.
Genetic programming with a flexible representation can find
the best solution without the use of domain knowledge. This
paper proposes a new genetic programming-based approach to
automatically learning informative features for different image
classification tasks. In the new approach, a number of image-
related operators, including filters, pooling operators and feature
extraction methods, are employed as functions. A flexible pro-
gram structure is developed to integrate different functions and
terminals into a single tree/solution. The new approach can evolve
solutions of variable depths to extract various numbers and types
of features from the images. The new approach is examined
on 12 different image classification tasks of varying difficulty
and compared with a large number of effective algorithms. The
results show that the new approach achieves better classification
performance than most benchmark methods. The analysis of the
evolved programs/solutions and the visualisation of the learned
features provide deep insights on the proposed approach.

Index Terms—Genetic Programming; Feature Learning; Image
Classification; Representation; Evolutionary Computation.

I. INTRODUCTION

MAGE classification aims to assign each image in the

dataset with a class label from a set of predefined class
labels based on the content in the image. Image classification
is an important task in computer vision and machine learning
with many real-world applications, such as medical diagnosis,
self-driving and biological identification [1, 2, 3, 4]. However,
many factors, including high image variations and high dimen-
sionality of image data, make this task very challenging.

To solve image classification effectively, feature extraction
is critical, where low-level pixel values are transformed into
high-level features. However, feature extraction is challenging
because of high inter-class and intra-class variations across
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images in scale, rotation, background, and lighting conditions.
The desired features should contain invariant and discrimina-
tive information of the images so that the discrimination of
different classes and the similarity of the same class can be
preserved. These features could help build effective classifiers
for classification [5]. Many methods have been developed to
extract features from images [6], such as local binary patterns
(LBP) [7], histogram of oriented gradients (HOG) [8] and
scale-invariant feature transform (SIFT) [9]. These features
are known as hand-crafted features [10], which are typically
effective for particular tasks. For example, LBP features are
effective for texture classification. When applied to new tasks
with unknown types of images, these methods may not be
effective [2]. Therefore, feature learning methods have been
proposed to automatically learn features from images for
classification [2, 11]. With a learning process, the features
can be optimised or fine-tuned to achieve good performance.
e.g., the maximum classification accuracy on the training set
[11]. Compared with the hand-crafted features, the learned
features are often more effective for a wide range of im-
age classification [2, 12]. However, existing feature learning
methods such as convolutional neural networks (CNNs) have
limitations, e.g., requiring rich domain expertise to design the
model for solving a specific task and requiring a large amount
of computational resources and training data. Therefore, it
is necessary to develop new feature learning methods to
overcome these limitations for image classification.

Genetic programming (GP) is an evolutionary computation
(EC) technique and can automatically evolve computer pro-
grams to solve problems using the principles of biological
evolution and natural selection [13]. GP is well known for
its flexible representation, good global search ability and high
interpretability of the evolved solutions [14, 15, 16]. GP has
achieved promising results in many tasks, such as symbolic
regression, classification, scheduling, and image analysis [17].
Compared with other EC techniques, GP has a more flexible
representation, i.e., tree-based representation [13, 18]. In tree-
based GP, each individual is represented by a tree, where the
root and internal nodes are functions/operators, and the leaf
nodes are terminals [19]. Tree-based GP can evolve solutions
without predefined structures. In other words, it can find
solutions/models of various depths, i.e., shallow models for
easy tasks and complex models for difficult tasks.

GP has been applied to image feature learning and achieved
promising results [4]. In these methods, several image-related
operators, e.g., Gaussian filter, mean filter, min filter, Laplacian
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filter, and Sobel filter, have been employed as GP functions to
evolve solutions that extract high-level image features [2, 20].
Besides, other image-related operators, e.g., existing feature
extraction methods, can be employed as GP functions to
form the internal nodes of GP trees. However, this has not
been extensively investigated. To effectively use image-related
operators in GP, a program structure is typically needed to
integrate different functions and terminals into a single tree.
Several GP methods with different program structures, e.g.,
multi-tier [21], two-tier [22] and multi-layer [2], have been
developed. But these program structures are often restricted
in a certain way and cannot be used when new image-related
operators are introduced in GP. More importantly, most of
these program structures are fixed [20, 21, 22, 23], and they
extract features in a predefined procedure, which may limit
their performance. Furthermore, most GP-based methods only
address binary image classification [20, 21, 22, 24]. In these
methods, the output of a GP tree from an image is a floating-
point number, which is often compared with a predefined
threshold to determine which class the image belongs to.
For example, if the output is smaller than zero, the image
belongs to the negative class. Otherwise, the image belongs to
the positive class. However, most image classification tasks
are multi-class classification so that these methods cannot
be directly used. In addition, multi-class classification often
involves more image variations and separations and is often
more difficult. Therefore, this paper proposes a new GP
approach, by addressing these limitations, to feature learning
for image classification, including multi-class classification.

The goal of this paper is to develop a new GP-based

approach with image-related operators and a flexible program
structure to feature learning for different image classification
tasks. The new approach is called FGP in short. A flexible
program structure, a new function set including image-related
operators, and a new terminal set will be developed in FGP.
The new approach will be evaluated on 12 benchmark datasets
of varying difficulty and compared with a large number of
state-of-the-art methods. Further analysis will be conducted to
provide an in-depth understanding of the new approach.

The characteristics of FGP can be summarised into the

following four aspects:

1) FGP can automatically evolve solutions/trees of variable
depths to extract features from the images. The com-
plexity of the FGP solutions for different tasks can be
different, which is more flexible than a predefined model
complexity, such as in CNNs.

2) FGP can produce various types and numbers of features
from images. The produced features may be generated
through filtering, pooling, or feature extraction using dif-
ferent image-related operators. The features can be from
filtering/pooling, or from feature extraction, or from
filtering/pooling and feature extraction simultaneously,
where current GP-based methods cannot achieve this.

3) FGP can be easily applied to different image classifi-
cation tasks to achieve good classification performance.
The experimental results on 12 benchmark datasets of
varying difficulty show that FGP can achieve better
performance than a number of effective algorithms.

4) The solutions evolved by FGP can be visualised to
understand what image-related operators are used in the
trees/solutions and what types of features are produced
by the trees. The visualisation of the learned features
provides further insights on the FGP approach.

II. BACKGROUND AND RELATED WORK

This section introduces the basics of commonly used image-
related operators. Then it discusses existing methods for
image classification, including traditional methods, NN-based
methods and GP-based methods. The current limitations of
these methods are summarised.

A. Image-Related Operators

1) Per-pixel Transformation: An image can be denoted as
Pyrxn if the image is gray-scale. Per-pixel transformation
represents that each p,, , in P is changed to x,, , to form a
new array X« . Many image-related operators can achieve
this, such as filtering or convolution.

Filtering is often used in image preprocessing such as using
a Gaussian filter to reduce the noise [6]. In this process,
a filter kernel Floqq1)x(2p41) With (2a + 1) x (20 + 1)
weights are employed to convolve the image P. The two-
dimensional discrete convolution process is denoted in Eq.
1. Commonly used filters are Gaussian filter, derivatives of
Gaussian, Laplacian filter, Laplacian of Gaussian (LoG) filter,
Gabor filter, and Sobel edge detector [6].

a b

Tmn = Z Z Pm—frn—f2 Ep1 g (1)

fi=—a fa=-b

2) Image Feature Descriptors: Feature description trans-
forms an image into a set of features. Well-known methods
are LBP [7], HOG [8], SIFT [9], and Gabor features [3].
LBP is a simple but effective method for texture description.
LBP compares each central pixel in a small window with its
neighbour pixels to obtain a binary code. Then each central
pixel is changed to a decimal number according to the binary
code and predefined weights. In general, the histogram of the
LBP image is extracted as features. More details and other
versions of LBP can be seen in [7]. HOG is well known for
object shape and appearance description [8]. The main idea of
HOG is to extract locally normalised histograms of gradient
magnitudes and orientations in each overlapping block as
features. The SIFT method [9] is a popular method to describe
local features as it detects keypoints from the image. From
each detected keypoint, it extracts 128 histogram features of
gradient magnitude and direction. Without keypoint detection,
a dense SIFT method was developed for feature extraction to
reduce the computational complexity [25].

B. Related Work on Image Classification

1) Traditional Methods: Traditional methods use a feature
description method to extract features from images and feed
them into classification algorithms for classification. Chapelle
et al. [26] developed a heavy-tailed RBF’s kernel function
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in support vector machines (SVMs) for image classification
based on histogram features. The results showed that the
classification performance can be improved by using the
developed kernel function in SVMs. Sergyan [27] extracted
simple histogram features and employed k-nearest neighbour
(KNN) for image classification, which achieved good perfor-
mance. Bosch et al. [28] developed a method to automatically
detect regions of interest and extract shape and appearance
features from the regions for object classification. However,
most of these methods cannot effectively solve other image
classification tasks since they use simple hand-crafted features.

2) Neural Network (NN)-based Methods: In recent decades,
NN-based methods, e.g., auto-encoders (AEs), CNNs, deep
belief networks (DBNs), and deep Boltzmann machines
(DBMs), have obtained promising results in image classifi-
cation. Among these methods, CNN is the most commonly
used method for image classification. Qian and Zhang [29]
developed a feedforward convolutional conceptor neural net-
work (FCCNN) by integrating components of CNN, principal
component analysis (PCA), binary thresholding (BT) and non-
temporal conceptor classifiers. The performance of FCCNN
has been examined on the MNIST variant datasets. Li and
Gong [30] proposed a self-paced CNN (SPCN) by assigning
weights to the training samples during the learning process
to enhance the learning robustness of CNN. The method has
gained better performance than a number of state-of-the-art
algorithms on six benchmark datasets. Bruna and Mallat [31]
proposed an invariant scattering convolution network (ScatNet)
for image classification by cascading wavelet transforms and
modulus pooling operators. This method has achieved better
performance than a Gaussian kernel SVM and a generative
PCA classifier on digital recognition and texture classification.
Based on the concept of PCA, Chan et al. [32] developed the
famous PCA network (PCANet) for feature learning, where a
set of filters generated by PCA were used in the convolutional
layer, and binary hashing and blockwise were employed to
obtain the final output features. PCANet has shown promising
results in many well-known benchmark datasets, including
face recognition and digit recognition. Rifai et al. [33] de-
veloped contractive auto-encoders (CAE) by using a new cost
function with a well-chosen penalty term. This method has
been examined on seven datasets and compared with other
types of AE, including three-layers stack AE (SAE-3) and
three-layers denoising AE with binary masking noise (DAE-b-
3). As variants of NNs, DBN and DBM have also been applied
by Larochelle et al. [34] to digit recognition. However, NNs
have limitations such as requiring a large number of computing
resources and training instances and requiring rich domain
knowledge to design the models.

3) GP-based Methods: GP has been applied to solve image
classification by simultaneously performing feature extraction
and feature construction. The multiple subtasks of dealing
with image classification, including region detection, feature
extraction, feature construction, and image classification, can
be integrated into a single GP tree using strongly typed GP
(STGP) [35]. The final output of a GP tree is a number/feature,
which can be used for classification using a predefined thresh-
old. To the best of our knowledge, the first method is the multi-

tier GP (known as 3TGP) proposed by Atkins et al. [21], where
high-level features are learned through an image filtering tier,
an aggregation tier and a classification tier. Al-Sahaf et al.
[22] improved 3TGP by simplifying the structure to an aggre-
gation tier and a classification tier (2TGP) to perform region
detection, feature extraction, feature construction, and image
classification, simultaneously. Bi et al. [20] developed a multi-
layer GP method (MLGP) with the utilisation of image-related
operators to extract and construct high-level features for image
classification. These methods have achieved good performance
on binary image classification, but their performance has not
been investigated on multi-class image classification.

Several GP methods have been developed to learn multiple
features from images and a traditional classification algorithm
have been employed for classification. Al-Sahaf et al. [36]
proposed a GP-based method to automatically produce a set
of features using an LBP-similar manner for texture image
classification. However, the number of features generated by
this method is fixed. To improve this, a dynamic method was
developed in [12] to learn a dynamic number of image features
for texture classification. In this method, a root function that
accepts a flexible number of child nodes was developed.
However, these two methods are for texture description and
their performance has not been examined on other types
of datasets. Shao et al. [2] proposed a multi-objective GP
(MOGP) method with an input layer, a filtering layer, a pooling
layer, and a concatenation layer to transform images into high-
level features. This method has achieved better performance
than the methods using hand-crafted features and simple CNNs
on four different datasets. But this method has a fixed program
structure to produce features from filtering and pooling, which
could not produce invariant features to achieve good perfor-
mance on difficult datasets. Bi et al. [37] developed a GP
method to automatically and simultaneously learn features and
evolve ensembles for image classification. This method built
an ensemble of classifiers to solve image classification. But
this method has shown inferior performance on large image
classification datasets. Bi et al. [38] proposed a GP algorithm
to simultaneously learn features and evolve ensemble for im-
age classification. This method uses classification algorithms
and image-related operators to evolve ensembles of classifiers
for classification. This method have achieved promising results
on several datasets. But this method focused on ensemble
learning and the models/solutions formed by a number of
various classifiers are complex and difficult to explain.

In summary, although many GP-based methods have been
developed for image classification [2, 36], most methods are
only for binary image classification due to easy implementa-
tion and the nature of the GP program’s output [1, 20, 21,
22, 24]. However, most image classification tasks are multi-
classification, which requires different algorithm designs to
solve it. The GP methods in [2, 12, 36, 39, 40] have shown
promising results on multi-class or binary image classification
by learning multiple features. However, these methods have
their limitations, such as have a fixed program structure and are
only for texture classification. Due to the current limitations,
the potential of GP in feature learning has not been extensively
investigated. Moreover, very few GP-based methods have been
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examined on large benchmark datasets and compared with
state-of-the-art algorithms for image classification. Therefore,
this paper proposes a new GP approach to feature learning with
a flexible program structure and image-related operators for
different types of image classification tasks, including multi-
class classification of large datasets.

III. THE PROPOSED APPROACH

In this section, the proposed approach with a flexible
program structure, named as FGP in short, is described in
detail, including the algorithm overview, the flexible program
structure, the function set, and the terminal set.

A. Algorithm Overview

The framework of the FGP approach is outlined in Al-
gorithm 1. FGP starts with population initialisation, where
N (population size) individuals/trees are randomly generated
using a commonly used tree generation method: ramped half-
and-half. Each FGP individual/tree is built by selecting func-
tions from the new function set to construct internal/root nodes
and selecting terminals from the new terminal set to construct
the leaf nodes. Each individual is then evaluated through the
fitness evaluation process to have a fitness value. After fitness
evaluation, the best individual and a developed hash table,
Cache_Table, are updated. The Cache_Table is used to
avoid evaluating the individuals that have been evaluated in
past generations. More details about Cache_Table will be
introduced in the following paragraph. At each generation,
the selection method and three genetic operators, i.e., subtree
crossover, subtree mutation and elitism, are used to generate
a new population to replace the current one. The evolutionary
process is terminated when the maximum number of genera-
tions is reached. Finally, the best individual is returned.

Algorithm 1: Framework of FGP
Input

¢ X _train: the training images; Y _train: the labels of
the training images.

Output : Best_Individual: the best individual.

Cache_Table < 0,

Py <+ Initialise the population using the ramped half-and-half
method according to the new program structure, the new function
and terminal sets;

S

3 Evaluate Py using Algorithm 2;

4 Update Best_Individual and Cache_Table;

5 g« 0

6 while g < G do

7 I <— The best individuals of P, using elitism operator;

8 S« Individuals selected from P, using tournament selection;

9 Ogt1 + Offspring generated from S using subtree crossover
and subtree mutation operators;

10 Evaluate the fitness of each individual p in Oy 1 using
Algorithm 2;

11 Pyi1 4 Ogp1UI;

12 Update Best_Individual and Cache_Table;

13 g+—g+1

14 end
15 Return Best_Individual.

A new fitness evaluation process is developed in FGP to
evaluate each individual, as described in Algorithm 2. On
image data, GP is often known as a computationally expensive

method, especially when the number of instances is large. To
avoid evaluating the same subtrees, subtree caching strategy
has been developed in GP on image data [41]. Inspired by
this, a hash table Cache_Table is employed in FGP to
store individuals and their fitness values so that the repeated
individual can be directly assigned a fitness value without
evaluation using the training data. To balance the search time
in Cache_Table and the evaluation time of an individual,
only N, best individuals and the previous population (FP)
are stored in C'ache_Table. With the Cache_Table, the new
fitness evaluation process is described in Algorithm 2. It starts
with checking whether the individual is in the C'ache_Table.
If the individual is in the Cache_Table, the fitness value is
directly assigned to the individual. Otherwise, the individual
is evaluated on a training set using a linear SVM. The linear
SVM is chosen because it is commonly used for image classi-
fication [2]. In this process, the FGP individual transforms
each image in X_train to a number of features to form
X_features. Then X _features is normalised using the min-
max normalization method and fed into a linear SVM using
the stratified k-fold cross-validation method. The stratified k-
fold cross-validation method splits the dataset (X_ features
and class labels) into k folds by preserving the class ratio.
Each time k£ — 1 folds are used to build an SVM classifier and
the classifier is tested on the remaining one fold. The average
test accuracy of the k folds is set as the fitness value to the
individual. In FGP, k is set to be 5 instead of 10 used in [2]
to reduce the computational cost of the fitness evaluation.

Algorithm 2: Fitness Evaluation

: Cache_Table: the hash table to store evaluated
individuals and their fitness values; X _train: the training
images; Y _train: the labels of the training images; p: the
individual to be evaluated.

Output : The fitness value for p: f(p).

Input

1 if p in Cache_Table then

2 | f(p) < the fitness value of p in Cache_Table;

3 else

4 Use p to transform X _train into features X _features;

5 Normalise X _features using the min-max normalisation
method;

6 Feed normalised X _features and Y _train into a linear SVM
using stratified k-fold cross-validation;

7 f(p) < average test accuracy of k folds

8 end

9 Return f(p).

Besides the above feature learning process, the main prop-
erties of FGP that lead to its success on feature learning
and difference from other GP-based methods are the flexible
program structure, the new function set and the new terminal
set. The following subsections will introduce these properties.

B. Flexible Program Structure

A flexible program structure is developed in FGP to inte-
grate functions and terminals into a single tree. The develop-
ment of the new program structure is based on three motiva-
tions. First, in state-of-the-art GP methods on feature learning
in [2, 39], the program structure has two main components, the
filtering layer and the pooling layer, connecting in a bottom-
up manner. This program structure is fixed, which may not
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Fig. 1. The program structure of the FGP approach (left) and three typical example programs that can be evolved by FGP (right).

be effective for learning invariant features as learned by CNN
using multiple layers’ transformations. To this end, we relax
this constraint to design a more flexible program structure,
which allows FGP to evolve programs with multiple layers
of filtering and pooling. Second, integrating feature extraction
functions into GP for feature learning has achieved promising
results in [40]. However, this method has a limitation of fixed
tree depth, and the learned features may not be invariant
to noise without filtering/denoising process. To address this,
a flexible filtering/pooling layer is added between the input
layer and the feature extraction layer. Third, hybrid fea-
tures/representations, i.e., combining features extracted from
filtering/pooling and features extracted from traditional feature
extraction methods, have been seen in CNN-based methods
with promising performance [42]. But no existing GP methods
can achieve this. Therefore, the flexible program structure
of FGP can combine the two different types of features to
produce hybrid features.

The program structure of FGP is based on STGP [35], which
has types constraint on functions (input types and output types)
and terminals (output types). In STGP, each function can only
use particular functions or terminals as child nodes, where its
input types must be the same as the output types of its child
nodes. Based on STGP, a program structure is developed in
FGP to integrate functions and terminals of different types into
trees. The new program structure and three typical example
programs are shown in Fig. 1. The new program structure has
several different layers, i.e., an input layer, filtering layers,
pooling layers, a feature extraction layer, a concatenation
layer, and an output layer. The input layer feeds the image
and ephemeral random constants into the FGP system. The
filtering layer performs filtering operations or other operations
on the image. The pooling layer conducts max-pooling to
the image with size reduction, which is in contrast to that in
[2, 39]. The feature extraction layer extracts features from the
image using several well-known feature extraction methods.
The concatenation layer concatenates/combines features from
different processes, i.e., filtering/pooling and feature extraction
into a feature vector to form the output of the FGP system.

More importantly, as shown in Fig. 1, the layers circled
with dash line are flexible, indicating that they may be in an
FGP program. These flexible layers allow the FGP program to
have multiple filtering and pooling layers to extract features,
which are similar to those in CNNs. The layers that are circled

with the line are fixed layers to make sure that there are feature
transformations from the input to the output. Using this flexible
program structure, three typically different types of features
can be produced by FGP. The first is to produce the combined
features from the feature extraction process as the Example
Program 1 shown in Fig. 1. The second is to produce the
combined features from the filtering and/or pooling processes
as the Example Program 2 shown in Fig. 1. The third is
to produce the combined features from the feature extraction
process and the filtering and pooling processes, as shown in
the Example Program 3 in Fig. 1.

This program structure allows FGP to evolve shallow trees
that contain a few functions or to evolve deep trees with
multiple layers of pooling and/or filtering. With this program
structure, FGP can produce various types and numbers of
features, which are flexible for solving different image classifi-
cation tasks. Associated with this program structure, a number
of functions and several terminals are employed in FGP, which
will be described in the following subsections.

C. Function Set

Many operators and methods have been developed for
feature detection and description. These operators can give
insights on what type of features are detected and why they
are effective. Therefore, a set of well-known image-related
operators is used in the function set of FGP. Based on the
program structure, these functions are classified into filtering
functions, pooling functions, feature extraction functions, and
feature concatenation functions.

1) Filtering Functions: There are 19 functions employed
in the filtering layer of FGP, as listed in Table I. The Gau
function takes an image and standard deviation o as inputs
and returns an image convolved by a Gaussian kernel. GauD
has three parameters, i.e., standard deviation o, 0 and 0. The
parameters o1 and oo represent orders of the derivative along
the X and Y axis, respectively. The Gabor filter is generated
by a Gabor wavelet function. It has parameters 6§ and f,
which indicate the orientation of the kernel and the wavelength
(A = 1/f) of the sinusoid function in the Gabor wavelet
function. The Lap function is generated by discretising and
approximating the Laplacian operator, and it can detect the flat
areas or edges. The LoG1 and LoG2 functions convolve the
Laplacian filter with the Gaussian function, which can reduce
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TABLE I
FILTERING FUNCTIONS

Function Input Output  Function Description

Gau 1 image, 1image Gaussian filter with standard
o deviation o

GauD 1 image, 1image Derivatives of Gaussian filter
g, 01,02

Gabor 1 image, 1image Gabor filter with 6 orientation
0,f and f frequency (%)

Lap 1 image limage Laplacian filter

LoG1 1 image 1image Laplacian of Gaussian filter

with 0 =1
LoG2 1 image 1image Laplacian of Gaussian filter
with 0 = 2

Sobel 1 image 1image Sobel edge detector

Sobel X 1 image 1image Sobel filter along the X axis

SobelY 1 image 1image Sobel filter along the Y axis

Med 1 image limage 3 x 3 median filter

Mean 1 image limage 3 X 3 mean filter

Min 1 image limage 3 x 3 min filter

Max 1 image limage 3 x 3 max filter

LBP-F 1 image 1image Return LBP image

HOG-F 1 image 1image Return HOG image

W-Add 2 images, 1image Add two weighted images
ni, N2

W-Sub 2 images, 1image Subtract two weighted images
ni1,n2

ReLU 1 image limage The rectified linear unit

Sqrt 1 image l image Sqrt an image

noise in the image. The standard deviation of the Gaussian
function in LoG1 and LoG?2 is set as 1 and 2, respectively.
Among these filters, the Gau, Med and Mean filters are
often employed for image denoising and smoothing. The fil-
ters, including GauD, Lap, LoG1, LoG2, Sobel, Sobel X, and
SobelY , can detect edges or flat areas in the image. The kernel
sizes for the Mean, Med, Min, and M ax functions are 3 X 3,
which is a commonly used kernel size. The kernel sizes for the
other filters are based on their parameters or default settings.
For example, the kernel sizes of the Gau and GauD functions
are related to their parameter o; and the kernel size of the
Sobel, Sobel X and SobelY functions is 3 x 3.

Besides the above filters, the LBP-F, HOG-F, W-Add,
W-Sub, ReLU, and Sqrt functions listed in Table I are also
employed. The LBP-F and HOG-F functions return a LBP
image and a HOG image for an input image, respectively.
The two functions produce high-level feature maps that may
be informative. The W-Add and W-Sub functions are used
to add or subtract two weighted images with different or the
same sizes, where the weights are n; and ns. In the case
where the sizes of the two images are not the same, W-Add
and W-Sub overlap the image pixels at coordinates (0, 0),
cut the exceeding part of the larger images, and perform the
add or subtract operation. ReLU is the rectified linear unit.
Sgqrt calculates the square root of each pixel value in an image
and is protected by returning 1 if the pixel value is negative.
ReLU and Sqrt can rescale the input image by transforming
the pixel values from the negative to non-negative.

2) Pooling Functions: Commonly used pooling functions
are max-pooling and average-pooling. Max-pooling returns
the maximum value of each sliding window, while average-

pooling returns mean value of the sliding window. The im-
portant features, e.g., edges, can be extracted by the max-
pooling function but may be smoothed by the average-pooling
function. Therefore, only max-pooling (simplified as MaxP)
function is employed. The MaxP function takes three argu-
ments as inputs, i.e., an image and the kernel sizes, k1, k2, and
returns a smaller image. The Max P function in FGP not only
extracts important features but also reduces the dimensionality
of the features. Note that k; and k, are two parameters of
MazP and are used as two ephemeral random constants of
FGP. The values of k; and k, are randomly selected from a
predefined range at the initialisation step and can be mutated
by mutation operator during the evolutionary process.

3) Feature Extraction Functions: The feature description
methods introduced in Section II-B1 can be employed as GP
functions to extract informative features. To reduce the search
space of FGP, the three most commonly used methods, i.e.,
HOG, LBP, and SIFT, are employed for feature extraction.
Table II lists the details of these functions.

TABLE 1T
FEATURE EXTRACTION FUNCTIONS

Function Input Output Description

SIFT 1 Image 1 Vector SIFT descriptor. 128 features are ex-
tracted from the image [25]

LBP I Image 1 Vector LBP descriptor. It extracts 59 uniform
LBP histogram features. In the LBP
method, the radius is 1.5 and the num-
ber of neighbours is 8 [7]

HOG 1 Image 1 Vector HOG descriptor. In HOG, the orienta-

tion is 9, the cell size is 8 x 8 and the
block size is 3 x 3 [8]. The mean value
of each 4 x 4 grid is extracted from an
HOG image

4) Concatenation Functions: To concatenate features pro-
duced by different functions, five different concatenation func-
tions (Root2, Root3, Rootd, FeaCon2, and FeaCon3) are
employed and developed. The descriptions of these functions
are listed in Table III. Each concatenation function can be used
as the root node of a program tree or a child node of another
concatenation function. This means that the tree depth of the
concatenation layer is flexible. With these functions, FGP trees
can output various numbers of features from an input image.

TABLE III
CONCATENATION FUNCTIONS

Function  Input Output  Description
RootX 2/3/4 Vectors 1 Vector ~ Concatenate vectors to a vector
FeaConY 2/3 Images 1 Vector  Convert images to a vector by

concatenating each row

D. Terminal Set

The terminal set of FGP contains the input image (/mage)
and the parameters for the functions, i.e., o, 01, 02, 6, f,
ni, no, k1, and ko. More details of them are listed in Table
IV. The Image terminal represents the input image, which
is a 2D array and the values in the array are normalised
into [0, 1] dividing by 255. The other terminals are ephemeral
random constants of FGP and only appear in the trees where



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 7

the corresponding functions are used. The values of these
terminals are randomly selected from a predefined range at
the initialisation step and can be modified by the mutation
operator during the evolutionary process.

TABLE IV
TERMINAL SET

Terminal Type  Description

Image  Image The input gray-scale image (2D array containing
image pixel values in the range of [0, 1])

o Integer The standard deviation of the Gaussian filter. It is
randomly initialised in the range of {1,2,3}

01,02 Integer The order of the Gaussian derivatives. They are
randomly initialised in the range of {0, 1,2}

0 Float  The orientation of the Gabor filter. It is in the range
of [0, 7m/8] with a step of 7/8 [3]

f Float
where v is an integer in the range of {0,1,2,3,4}
[3]

ni, no Float  The parameters for the W —Add and W —Sub func-
tions. They are randomly generated in the range of
[0, 1)

k1, k2 Integer The kernel size of the MaxP function. They are in

the range of {2,4}

IV. EXPERIMENT DESIGN

In this section, the design of the experiments is described,
including benchmark datasets, benchmark methods, parameter
settings, and test process.

A. Benchmark Datasets

Twelve widely used image classification datasets are em-
ployed to examine the performance of the FGP approach. The
details of the datasets are listed in Table V. These datasets
represent different types of image classification tasks, i.e.,
facial expression classification (FEI_1 [43] and FEI_2 [43]),
face recognition (ORL [44]), texture classification (KTH [45]),
scene classification (FS [46]), digit recognition (MB [34],
MRD [34], MBR [34], and MBI [34]), and object classification
(Rectangle [34], RI [34] and Convex [34]). The images in
these datasets are gray-scale or converted to gray-scale images
to reduce the computational cost. The example images from
the 12 datasets are shown in Fig. 2-4. The main reason
for selecting these datasets is that they represent a wide
range of classification tasks or different challenges in image
classification, such as background change or additional noise.
These datasets are very suitable for evaluating the performance
of the proposed approach on different types of images. It is
noticeable that the MB, MRD, MBR, MBI, Rectangle, RI,
and Convex datasets are large datasets with 50000 images for
testing. Very few GP-based methods have been tested on these
datasets. In addition, the performance of the proposed FGP
approach has not been tested on the well-known large datasets
such as ImageNet due to the high computational cost.

The FEI_1 and FEI_2 datasets are facial expression classi-
fication tasks [43], containing facial images with smiling or
natural expressions sampled from 200 different people. The
ORL dataset [44] has 40 classes of different facial images and
each class only has 10 image, which is very small. The KTH
dataset [45] is a texture classification dataset, containing 810

images equally in 10 classes. The images are sampled on nine
different scales with three poses under four illumination con-
ditions, which indicates the difficulty of classification. The FS
dataset [46] includes 3859 natural scene images belonging to
13 classes, such as the scene of the forest, street, highway, and
coast, respectively. FS is a challenging task of understanding
the context of the complex scene.

Fig. 2. Example images from the FEI_I, FEI_2, ORL, KTH, and FS
benchmark datasets, respectively.
TABLE V
SUMMARY OF THE 12 BENCHMARK DATASETS
No. | Dataset Image Size | Training Test Set | #Class
Set Size Size

1 FEIL_1 60x40 150 (75) 50 2

2 FEI_2 60x40 150 (75) 50 2

3 ORL 50x55 240 (6) 160 40

4 KTH 50x50 480 (48) 330 10

5 FS 55x%55 1300 (100) | 2559 13

6 MB 28x28 12000 50000 10

7 MRD 28x28 12000 50000 10

8 MBR 28x28 12000 50000 10

9 MBI 28x28 12000 50000 10

10 | Rectangle | 28x28 1200 50000 2

11 | RI 28x28 12000 50000 2

12 | Convex 28%28 8000 50000 2

Fig. 3. Example images from the MB, MRD, MBR, and MBI benchmark
datasets, respectively. Each dataset has two example images and the corre-

sponding class labels (digits) are under these images.

l]lIIIII]’IEIIL A

Rectangle Convex

Fig. 4. Example images from the Rectangle, RI and Convex benchmark
datasets, respectively. The first row shows the negative class, and the second
row shows the positive class.

The datasets 1-5 do not have public training and test sets so
that they are split using commonly used proportions, as shown
in Table V. In contrast, the MB, MRD, MBR, MBI, Rectangle,
RI, and Convex datasets [34] have separated training and test
sets !, which can be directly used in experiments. The MB
dataset is a subset of the famous MNIST benchmark dataset.

'"The training and test sets can be downloaded from
http://www.iro.umontreal.ca/ lisa/twiki/bin/view.cgi/Public/PublicDatasets
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The training set of MB has 12000 images, and the test set has
50000 images. The MRD, MBR and MBI datasets are variants
of MB by adding additional factors of variations, including
rotation, random background and image background. MRD
contains digit images with rotation by an angle generated
uniformly between O and 27. MBR has images with random
background, and MBI has images with adding random images
as their background. The MRD, MBR and MBI datasets are
more difficult than MB due to these additional variations. The
Rectangle, RI and Convex datasets are object classification.
Rectangle and RI have images with rectangle objects, and the
tasks are to recognise whether each rectangle in an image has
a larger width or length. RI is more difficult than Rectangle
due to an additional random background. The Convex dataset
has images with convex or non-convex, i.e., two classes.

B. Benchmark Methods

To show the effectiveness of the proposed FGP approach, a
large number of benchmark methods are used for comparisons.
Because the datasets 1-5 do not have public training and
test sets, we need to split them and run all the experiments
of the benchmark methods to make sure that the reported
classification results are on the same test sets. For the datasets
6-12, the results of many methods have been reported on
the same public test sets. These results can be directly used
for comparisons. Therefore, the benchmark methods on the
datasets 1-5 are different from those on the datasets 6-12.

On datasets 1-5, 13 different methods are used as bench-
mark methods. They are the EGP method [37], the IEGP
method [38], six commonly used classification algorithms
using raw pixels, three SVM methods using different pre-
extracted features, and two CNN-based methods with dif-
ferent architectures. The EGP and IEGP methods are able
to automatically learn features from images and evolve an
ensemble of classifiers for classification [37, 38]. The six com-
monly used classification algorithms are linear SVMs, KNN,
logistic regression (LR), RF, adaptive boosting (AdaBoost),
and extremely randomised trees (ERF). These methods use
the normalised raw pixel values of images as inputs to
train the classifiers. The three SVM methods are LBP+SVM,
HOG+SVM and SIFT+SVM [11], which use LBP, HOG,
or SIFT features as inputs of SVMs for classification. The
LBP, HOG and SIFT features are extracted by the methods
described in Table II. The final two benchmark methods are a
five-layer CNN (CNN-5) [2] and an eight-layer CNN (CNN-
8) [47]. CNNs are well known for image classification so that
it is necessary to compare FGP with CNNs.

On datasets 6-12, 20 existing methods are used as bench-
mark methods. These methods have been reported recently
or are representative methods for image classification. The
classification results of these 20 methods are collected from
the corresponding papers. These methods are SVM+RBF [34],
SVM+Poly [34], SAE-3 [33], DAE-b-3 [33], CAE-2 [33],
SPAE [48], RBM-3 [33], ScatNet-2 [31, 32], RandNet-2 [32],
PCANet-2 (softmax) [32], LDANet-2 [32], NNet [34], SAA-
3 [34], DBN-3 [34], FCCNN [29], FCCNN (with BT) [29],
SPCN [30], EvoCNN [49], EGP [37], and IEGP [38]. Most

of these methods are NN-based methods, which have been
introduced in Section II-B2. Note that in several methods,
including SVM+RBF, SVM+Poly, NNet, SAA-3, and DBN-3,
model selection has been conducted to find the best parameters
using a training set and a validation set. Then these methods
with the best parameters were trained using the training set
and tested on the test set. The EvoCNN method and the IEGP
method have achieved the best performance on some of these
benchmark datasets. The EvoCNN method is a deep learning
method, which uses an evolutionary algorithm to automatically
search for the best architectures of CNNs. The IEGP method is
an ensemble method for image classification, which includes
a number of difference classifiers.

C. Parameter Settings

The parameter settings for FGP are based on the commonly
used settings in the community of GP [50]. In FGP, the
maximum number of generations G is 50 and the population
size N is 500. The crossover rate Pc is 0.8, the mutation rate
Pm is 0.19, and the elitism rate Pe is 0.01. The selection
method is the tournament selection with size 7. The tree depth
is between 2-6 at the initialisation step, and the maximum tree
depth is 8. Note that in FGP, which is based on STGP, the
type constraint is more important than the depth constraint.
Therefore, a tree may have a depth of over eight. As a
new parameter, Nc, the number of individuals stored in the
Cache_Table is set to 6 x N (IV for the previous population
and 5 x N for the best individuals at the past generations)
based on the assumption that 6x N is efficient and effective. In
general, the value of N¢ can be any number but a too big one
may lead to a long searching time in C'ache_Table, and a too
small one only stores very limited individuals, which makes
the Cache_Table not very useful. Note that the parameter
settings for FGP are the same on the 12 different datasets
for generality, although performing parameter tuning for FGP
could further improve its performance on these datasets. The
analysis of the parameter settings for FGP is presented in the
supplementary materials due to the page limit.

The parameter settings for the six classification algorithms
SVM, KNN, LR, RF, AdaBoost, and ERF refer to [51, 52].
In KNN, the number of nearest neighbours is set to 1 [12]. In
SVM and LR, the penalty parameter C is set to 1 [51]. In RF,
ERF and AdaBoost, the number of trees is set to 500, and the
maximum tree depth is set to 100 [52]. In CNN-5 and CNN-8,
the commonly used ReLU function is used as the activation
function and softmax is used for classification [47]. To avoid
overfitting, dropout is added after the pooling layer and the
first fully connected layer with 0.25 and 0.5 probabilities,
respectively [53]. The maximum number of epochs is set to
500, and the batch size is set to 128, which is commonly used.

The implementation of FGP is based on the DEAP (Dis-
tributed Evolutionary Algorithm in Python) [54] package. The
implementations of the classification algorithms are based on
the scikit-learn [55] package and the implementations of CNNs
are based on Keras [47]. The experiments of FGP on each
dataset conduct 30 independent runs to avoid the experimental
bias, which follows the conventions of the EC communities.
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Each of the benchmark methods has been run 30 times on
datasets 1-5 to obtain the classification results.

D. Test Process

The test procedure of the best individual/tree found by FGP
is shown in Fig. 5. In the process, the training set and the
test set are used (note that only the training sets are employed
during the evolutionary process). The best FGP individual/tree
is used to transform the training and test images into features.
Then the transformed training and test sets are normalised
using the min-max normalisation method to scale the features
[56]. Note that the normalisation of the test set is based on the
minimal and maximum values of each feature in the training
set. The normalised training set is used to train a linear SVM
classifier. The trained classifier is tested on the normalised test
set to obtain the classification error rate.

. Best tree o | Transformed Min-max | Train )
Training set }—»{ training set normalisation Linear SVM
Test set Best tree | Transformed Min-max | Test Classifier
test set normalisation

Fig. 5. The test procedure of the best individual/tree found by FGP on the
test set.

) Classification
error rate

V. RESULTS AND DISCUSSIONS

In this section, the experimental results of FGP on the 12
benchmark datasets are analysed and compared with that of a
large number of benchmark methods.

A. Classification Results on Datasets 1-5

The classification results on datasets 1-5, i.e., FEI_1, FEI_2,
ORL, KTH, and FS, are listed in Table VI. The results
are the minimal classification error rate (Min), the average
classification error rate of 30 runs and the standard deviation
(Mean=+St.dev). To show the significance of performance
improvement, the Wilcoxon rank-sum test with a 95% sig-
nificance interval is used to compare FGP with a benchmark
method. In Table VI, the symbols “+” and “~” indicate that
FGP achieves significantly better and worse results than the
compared method. The symbol “=" denotes that FGP achieves
similar results to the compared method. In Table VI, the
best error rate and the average error rate on each dataset are
highlighted in bold. The final row of each bock in the table
summaries the overall results of the significance test.

From Table VI, it can be found that FGP achieves sig-
nificantly better performance in 52 comparisons out of the
65 comparisons. More importantly, FGP achieves significantly
better or similar results than any of the 13 benchmark methods
on the ORL and KTH datasets, which are the face recognition
and texture classification tasks. On the FEI_1 and FEI_2
datasets, which are facial expression classification tasks, FGP
is significantly better than seven methods on FEI_1 and than
nine methods on FEI_2. On the ORL dataset, FGP not only
obtains the minimal error rate but also achieves the best mean
error rate among all the methods. The ORL dataset is a small
dataset with six training images per class. The results indicate

that FGP is more effective than IEGP when learning from a
small number of training images. On the KTH dataset, FGP
achieves the best minimal error rate and slightly worse mean
error rate (0.36% higher) than the best error rate obtained by
IEGP. On the FS dataset, which is a difficult dataset, FGP
achieves better results than any of the 13 benchmark methods
except for IEGP. IEGP is an ensemble method using multiple
classifiers for classification. Compared with IEGP, FGP only
uses one classifier so that its performance may be limited on
some difficult datasets. The experimental results show that
FGP is very effective for dealing with different types of image
classification tasks.

Compared with SVM, KNN, LR, RF, AdaBoost, and ERF,
which use raw pixels for classification, FGP is more effective
by automatically learning a number of high-level features
for classification of different datasets. The results show that
feature extraction is more important for texture and scene
classification since FGP achieves better results than any of
these methods on scene and texture datasets. Comparing the
results obtained by FGP with that by LBP+SVM, HOG+SVM
and SIFT+SVM, it is clear that the features learned by FGP are
more effective than the LBP, SIFT and HOG features for image
classification, especially for texture classification and scene
classification. This shows that automatically learning features
is more effective than manually extracting features for image
classification. Feature extraction methods often require domain
expertise, while feature learning methods do not. There are
two advantages: effectiveness and no domain knowledge re-
quirement, of FGP as a feature learning method in contrast to
traditional feature extraction methods. Compared with CNN-
5 and CNN-8, the FGP approach achieves comparable or
significantly better performance on the five datasets. Compared
with EGP and IEGP, which use ensembles to solve image
classification, FGP uses a single classifier but achieves similar
or slightly worse performance. As a result, FGP is an effective
approach to learning informative features for different types of
image classification tasks.

B. Classification Results on Datasets 6-12

On datasets 6-12, 20 baseline methods with published
results are used for comparisons. Note that some of the 20
methods have not been examined on the Rectangle, RI, and
Convex datasets so that there are 17 benchmark methods on
Rectangle, 16 benchmark methods on RI and 12 benchmark
methods on Convex. Table VII lists the classification error
rates (%) of FGP and 20 benchmark methods. Each column
of Table VII shows the results on one dataset and the minimal
error rate is highlighted in bold. The results of FGP, including
the minimal error rate (best), the mean error rate (mean)
and the standard deviation (std), are listed at the bottom of
Table VII. Since the benchmark methods only have the best
classification results, we compare the FGP approach with them
using the best error rate. The symbol “+” in the table denotes
that FGP is better than the compared method in terms of the
best error rate. The final row of Table VII summaries the
ranking results of FGP among all the methods on each dataset.

From Table VII, it can be found that FGP achieves a
smaller error rate than any of the benchmark methods on two
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TABLE VI
CLASSIFICATION ERROR RATES (%) OBTAINED BY THE FGP APPROACH AND THE BENCHMARK METHODS ON DATASETS 1-5
FEI_1 FEI_2 ORL KTH FS
Methods Min Mean=+St.dev | Min Mean+St.dev | Min Mean+St.dev | Min Mean+St.dev | Min Mean+St.dev
SVM 10.00  10.00+0.00+ 12.00  12.00+0.00+ 5.62 5.6240.00+ 53.03 55.41+2.83+ 79.37  79.71+£0.15+
KNN 68.00  68.00£0.00+ 92.00  92.00£0.00+ 5.62 5.6240.00+ 65.76  65.76+0.00+ 75.65  75.65+0.00+
LR 8.00 8.00+0.00+ 12.00  12.00+0.00+ 6.25 6.2540.00+ 51.21  51.21+0.00+ 76.51  76.51+£0.00+
RF 2.00 2.93+1.01- 10.00  10.80+1.13+ 6.88 7.67+£0.63+ 40.00  42.19+0.83+ 62.64  63.4710.49+
AdaBoost 20.00 21.33+1.32+ 20.00 24.00+3.44+ 40.62  47.73£4.00+ 62.12  66.56+1.37+ 82.53  86.96+1.47+
ERF 6.00 6.734+0.98+ 8.00 9.4040.93+ 2.50 3.29+0.59+ 38.48  40.17+0.86+ 62.06  62.85+0.36+
LBP+SVM 34.00 43.274+3.66+ 32.00 37.47+3.52+ 12.50  12.58+0.21+ 21.21  26.71+4.18+ 50.21  66.73+8.90+
HOG+SVM | 4.00 4.0040.00— 18.00  18.00+0.00+ 8.75 8.75+£0.00+ 4273 44.0440.64+ 87.89  92.09+2.47+
SIFT+SVM | 44.00  44.00£0.00+ 38.00  38.00+0.00+ 6.25 6.2540.00+ 3424  34.2440.00+ 39.08  39.08+0.00+
CNN-5 2.00 4.601+1.30= 2.00 4.731+1.62— 3.12 4.71£1.06+ 1424  17.44+1.87+ 49.86  51.97+1.16+
CNN-8 2.00 4.67+1.32= 4.00 9.07+1.87= 5.00 6.964+1.09+ 23.64  28.37+3.18+ 50.84 53.21£1.01+
EGP [37] 0.00 3.8042.02= 0.00 1.93+1.67- 0.62 2.5641.24+ 1212 22.47+5.08+ 32.83  38.931+2.87+
IEGP [38] 0.00 3.3342.59- 0.00 3.7943.73- 0.00 1.7140.98= 1.51 3.5745.08= 7.46 10.37+£1.50-
FGP 2.00 5.5342.67 4.00 8.67+3.36 0.00 1.37+1.04 1.21 3.93+£1.13 25.52 29.41+1.74
Overall 7+, 3=, 3— 9+, 1=, 3— 12+, 1= 12+, 1= 12+, 1-
TABLE VII
CLASSIFICATION ERROR RATES (%) OF FGP AND BENCHMARK METHODS ON DATASETS 6-12

Methods MB MRD MBR MBI Rectangle | RI Convex

SVM+RBF [34] 3.03(+) | 11.11(+) | 14.58(+) | 22.61(+) | 2.15 (+) 24.04(+) | 19.13(+)

SVM+Poly [34] 3.69(+) | 1542(+) | 16.62(+) | 24.01(+) | 2.15(+) 24.05(+) | 19.82(+)

SAE-3 [33] 3.46(+) | 10.30(+) | 11.28(+) | 23.00(+) | 2.14(+) 24.05(+) | —

DAE-b-3 [33] 2.84(+) | 9.53(+) 10.30(+) | 16.68(+) | 1.99(+) 21.59(+) | —

CAE-2 [33] 2.48(+) | 9.66(+) 10.90(+) | 15.50(+) | 1.21(+) 21.54(+) | -

SPAE [48] 3.32(+) | 10.26(+) | 9.01(+) 13.24(+) | - - -

RBM-3 [33] 3.11(+) | 10.30(+) | 6.73(+) 16.31(+) | 2.60(+) 22.50(+) | —

ScatNet-2 [31, 32] 1.27(+) | 7.48(+) 12.30(+) | 18.40(+) | 0.01(+) 8.02(+) 6.50(+)

RandNet-2 [32] 1.25(+) | 8.47(+) 13.47(+) | 11.65(+) | 0.09(+) 17.00(+) | 5.45(+)

PCANet-2 (softmax) [32] | 1.40(+) | 8.52(+) 6.85(+) 11.55(+) | 0.49(+) 13.39(+) | 4.19(+)

LDANet-2 [32] 1.05 7.52(+) 6.81(+) 12.42(+) | 0.14(+) 16.20(+) | 7.22(+)

NNet [34] 4.69(+) | 18.11(+) | 20.04(+) | 27.41(+) | 7.16(+) 33.20(+) | 32.25(+)

SAA-3 [34] 3.46(+) | 10.30(+) | 11.28(+) | 23.00(+) | 2.41(+) 24.05(+) | 18.41(+)

DBN-3 [34] 3.11(+) | 10.30(+) | 6.73(+) 16.31(+) | 2.60(+) 22.50(+) | 18.63(+)

FCCNN [29] 243(+) | 8.91(+) 6.45 13.23(+) | — - -

FCCNN (with BT) [29] 2.68(+) | 9.59(+) 6.97(+) 10.80(+) | — - -

SPCN [30] 1.82(+) | 9.81(+) 5.84 9.55(+) 0.19(+) 10.60(+) | —

EvoCNN (best) [49] 1.18 5.22 2.80 4.53 0.01(+) 5.03 4.82(+)

EGP (best) [37] 2.81(+) | — - - 0.09(+) - 6.03(+)

TIEGP (best) [38] 1.18 5.72 6.41 10.59(+) | 0.00 5.12 1.74(+)

FGP (best) 1.18 7.37 6.54 7.48 0.00 6.10 1.54

FGP (mean) 1.30 8.44 7.34 10.35 0.12 7.34 1.84

FGP (std) 0.06 0.6 0.42 1.41 0.11 0.61 0.19

Rank 2/21 3/20 520 2/20 1/18 3/17 1/13

datasets, i.e., Rectangle and Convex. Note that these datasets
have been used by many effective methods (such as the deep
learning method EvoCNN and the ensemble method IEGP)
so that even 1% improvement in error rate is very difficult
to achieve. On MB, the FGP approach achieves 1.18% error
rate, which is better than any of the 20 benchmark methods
except for LDANet-2. The LDANet-2 method achieves 1.05%
error rate on MB, which is slightly better than FGP’s 1.18%
error rate. Although FGP is worse than LDANet-2 on MB, it
is better than LDANet-2 on the other six datasets. The MRD,
MBR and MBI datasets are three variants of MB obtained by
adding additional factors to make it more difficult. On MRD,
FGP achieves an error rate of 7.37%, which is better than 17
benchmark methods and worse than EvoCNN and IEGP. On
MBR, FGP ranks fifth among all the benchmark methods. On
MBI, FGP achieves an error rate of 7.48%, which is better than
19 methods and only worse than EvoCNN. On the Rectangle
and Convex datasets, FGP achieves better results than any of
the benchmark methods. It is noticeable that FGP finds the

perfect solution on Rectangle, which the CNN-based or NN-
based methods such as SPCN, NNet, SAE-3, and EvoCNN are
not able to find. RI is an extension of the Rectangle dataset
and it is more difficult. On RI, most methods perform worse
with respect to Rectangle, e.g., LDANet-2 obtains 16.20%
error rate, SPCN obtains 10.60% error rate, and NNet obtains
33.20% error rate. FGP obtains an error rate of 6.10%. On the
Convex dataset, FGP achieves the best error rate of 1.54%,
which is better than that of any benchmark method.

Compared with EvoCNN, which is a state-of-the-art deep
learning algorithm, FGP achieves better or the same error rates
on the MB, Rectangle and Convex datasets. FGP is a non-
neural network-based algorithm, while EvoCNN is a CNN-
based algorithm, where an evolutionary algorithm is used to
search for the best architecture. EvoCNN was designed to find
a more complex CNN-based solution for image classification
so that it can achieve better performance on the other four
difficult datasets. Compared with EvoCNN, FGP has a smaller
search space and can find simpler solutions with several image-
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related operators. These advantages enable FGP to be an
alternative to effective feature learning.

Compared with IEGP, which is an effective ensemble
method, FGP achieves better or the same performance on
four datasets and worse performance on three datasets. FGP
only uses a single classifier for classification, while IEGP
constructs an ensemble of accurate and diverse classifiers
for classification. The results confirm the effectiveness of
the features learned by FGP, since the latter can achieve
comparable performance even if it uses a single classifier
instead of an ensemble. Compared with IEGP, FGP is much
faster in training and testing, as discussed in the supplementary
materials. Besides, the solutions evolved by FGP are easy to
explain, while the solutions of IEGP include a number of
classifiers and are difficult to explain.

The comparisons demonstrate that FGP achieves results that
are better or comparable to the 20 existing effective algorithms
for object classification. Compared with the state-of-the-art
deep learning and ensemble methods, FGP achieves better
or similar results on several datasets. These results indicates
that the features learned by FGP are effective for image
classification. FGP has a flexible program structure and a
function set including many image-related operators, which
enables it to various types and numbers of effective features
for image classification.

VI. FURTHER ANALYSIS

This section further analyses the FGP approach to provide
insights on why it achieves better results. First, the evolved
example programs/solutions of FGP are analysed to under-
stand what features are learned. Second, the datasets with the
learned features are visualised and compared with the original
raw pixels. This provides insights on how the hidden structures
of the datasets are changed by the solutions of FGP.

A. Evolved Programs/Solutions

1) An Example Program on FEI_1: An example program
evolved by FGP on the FEI_1 dataset is visualised in Fig. 6. To
show how the program extracts features, two example images
from the natural and smile classes are used for visualisation,
as shown in Fig. 7. The example program has filtering and
pooling functions to describe the features from the input
image. The edge filters, i.e., SobelY and GauD, are used
as nodes in the two branches of the example program. These
operators can extract edges from the images before applying
the pooling operators. The two example images only have
a difference in facial expressions. From Fig. 7, it is clear
that using different filters can obtain informative features that
enlarge the difference between classes. Finally, the example
program with 24 nodes produces 750 features from an input
60 x 40 image, i.e., 600 features by the left branch and 150
features by the right branch.

2) Example Programs on Rectangle: Three example pro-
grams of FGP on the Rectangle dataset are visualised in
Fig. 8. The three programs achieve 100% accuracy on both
the training and test sets, respectively. In contrast to the
example program in Fig. 6, which describes features using

# Nodes: 24

# Features: 750

Fig. 6. Example program evolved by FGP on the FEI_1 dataset. It achieves

98% accuracy on both the training and test sets.

2
&
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Fig. 7. Features produced by the example program in Fig. 6 on two images
from different classes.

D -ID -

filtering and pooling functions, the three example programs
generate features using feature extraction, filtering and pooling
functions. The three example programs extract SIFT and
LBP features from the input image or the images after the
filtering functions such as Med, LoG1l, Gau, and LoG2.
Since the Rectangle dataset has images with rotation and scale
variations, the features that are invariant to these variations
are more discriminative than the other types of features.
Therefore, the LBP and SIFT features are extracted using the
example programs. It is noticeable that the LBP and SIFT
functions/nodes in the three example programs have different
child nodes, which indicate that each LB P or SIF'T function
extracts different features.

By analysing the example programs on FEI_1 and Rectan-
gle, it is clear what types of features can be extracted by FGP
and how the features are extracted. Owning to the flexible
program structure and the new function set, FGP evolves
programs that are able to extract various numbers and types
of features for effective classification. Moreover, FGP can find
multiple optimal solutions of variable depths for a task.

B. Data Visualisation

A popular visualisation method, t-distributed stochastic
neighbour embedding (t-SNE) [57], is employed to visualise
the features learned by FGP. The t-SNE method is a nonlinear
dimension reduction technique by mapping high-dimensional
data into two- or three-dimensional data. The resulting low-
dimensional data can be easily visualised in a scatter plot,
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# Nodes: 23

# Features: 433

Example Program 1

#Nodes: 9 #Nodes: 11

# Features: 187 # Features: 246

Example Program 3

Example Program 2

Fig. 8. Example programs evolved by FGP on the Rectangle dataset. They achieve 100% accuracy on both the training and test sets. The three programs
learn 433, 187 and 246 features, respectively. Meanwhile, their tree sizes (the number of nodes) are 23, 9 and 11, respectively.

which shows how well the similarities within each class is
preserved. Compared with other visualisation methods, t-SNE
produces better visualisation results [57].

Three large datasets, i.e., MB, MBI and Rectangle, are
used to run the experiments for visualisation. To reduce the
computational cost, each experiment randomly selects 5,000
images from each dataset for visualisation. To show how
the hidden structure of the data is changed by the FGP
program, the original data are visualised for comparisons. The
comparisons with the other features: LBP, HOG and SIFT
features, are shown in the supplementary materials due to the
page limit. The visualisation results are plotted in a scatter, and
the class label of each point is used to give a specific colour
to the point in the plot. The parameter settings for t-SNE are
the same as those in [57].

~100 -100
-100 -75 -50 -25 0 25 50 75 -100 -75 =50 -5 0 25 50 75

(a) Original data (MB) (b) Learned features by FGP

Fig. 9. The visualisation results of the ten classes from the MB dataset (each
colour represents one class). The left figure shows the original subset of MB
with raw pixels. The right figure shows the transformed subset of MB with
the learned features by FGP.

=100 =75 =50 =25 o 25 50 75
(a) Original data (MBI) (b) Learned features by FGP

Fig. 10. The visualisation results of the ten classes from the MBI dataset
(each colour represents one class). The left figure shows the original subset of
MBI with raw pixels. The right figure shows the transformed subset of MBI
with the learned features by FGP.

Fig. 9 shows that the ten classes of the original MB data

and the transformed MB data with the learned features by FGP
are well clustered after 1000 iterations using t-SNE. In Fig.
9(a), there are still some points being clustered into wrong

classes as each cluster of points contains other points with
different colours. In contrast, Fig. 9(b) shows clearer clusters
of the data transformed by an example program of FGP. This
figure shows that fewer points have been clustered into wrong
classes, and each cluster is clearer than that in Fig. 9(a). The
visualisation results of the original MBI data (Fig. 10(a)) show
a high mixture of different classes as it is very difficult to
distinguish a cluster from the scatter plot. The reason is that
the images of MBI are noisy, which makes the visualisation of
MBI more difficult than that of MB. The visualisation of the
transformed MBI data (Fig. 10(b)) has a clearer plot than that
of the original data. It can be observed that several clusters of
points exist in Fig. 9 even some points are not well clustered.
Comparing the visualisation results in Fig. 9 with the results
in Fig. 10, it is obvious that the hidden structure of the MBI
data is more complex than that of the MB data so that MBI
is more difficult than MB. The results reveal that the evolved
programs of FGP transform the original data into a space that
the new data can be easily clustered by t-SNE, and the hidden
structure can be well captured.

The visualisation of the Rectangle dataset is simpler than
that of MB and MBI, as Rectangle only has two classes.
Fig. 11 shows the visualisation results of the original data
and the learned features by FGP using three different evolved
programs, respectively. Fig. 11(a) has a clear scatter plot,
where the two classes are shown in two different colours.
However, it is obvious that many points are clustered into the
wrong class in Fig. 11(a). The scatter plots are clearer in Fig.
11(b)-(d) than that in Fig. 11(a). It is noticeable that all the
points are clustered into the correct classes by t-SNE using the
transformed data (1-3). The visualisation results confirm the
search ability and superiority of FGP on finding the optimal
solutions to transform the data into a new feature space where
the new data can be easily classified.

VII. CONCLUSIONS

The goal of this paper was to develop a new GP-based
approach with image-related operators to feature learning for
different types of image classification tasks. This goal has
been successfully achieved by developing the FGP approach
with a flexible program structure, a new function set and a
new terminal set, and examining it on 12 different image
classification datasets of varying difficulty. The proposed FGP
approach can evolve solutions of variable depths for a target
task. The solutions of FGP can produce various numbers and
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Fig. 11. The visualisation results of the Rectangle dataset (each colour represents one class). The left figure shows the original subset of Rectangle with raw
pixels. The other three figures show the transformed subsets of Rectangle with the learned features by FGP using the example programs in Fig. 8, respectively.

types of features from raw images. The experimental results
showed that FGP achieved significantly better performance
than the 12 commonly used methods on five different types
of image classification datasets. Furthermore, the performance
of FGP has been examined on seven large datasets, including
MNIST variants. The experimental results showed that FGP
achieved better classification performance than the existing
methods to which it has been compared. To conclude, FGP
is an effective and promising approach to feature learning for
different types of image classification tasks.

In addition to the encouraging results achieved by FGP,
further analysis provided more insights on why it achieves
good performance. The solutions found by FGP can be easily
visualised as trees to show how and what features are ex-
tracted. The visualisation technique, -SNE, was employed to
further understand the features learned by FGP in comparison
to raw pixel values. The results revealed that the FGP solutions
transform raw pixel values of images into a new feature space
so that each class can be effectively distinguished.

The FGP approach is an example of showing the potential of
GP-based methods for feature learning in image classification.
In the future, the scalability of GP-based methods for large-
scale datasets will be investigated. To achieve this, other effec-
tive approaches, such as surrogate models, may be needed to
improve the computational cost of GP on large-scale datasets.
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