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Abstract—Being able to extract effective features from different
images is very important for image classification, but it is
challenging due to high variations across images. By integrating
existing well-developed feature descriptors into learning algo-
rithms, it is possible to automatically extract informative high-
level features for image classification. As a learning algorithm
with a flexible representation and good global search ability,
genetic programming can achieve this. In this paper, a new
genetic programming-based feature learning approach is de-
veloped to automatically select and combine five existing well-
developed descriptors to extract high-level features for image
classification. The new approach can automatically learn various
numbers of global and/or local features from different types
of images. The results show that the new approach achieves
significantly better classification performance in almost all the
comparisons on eight data sets of varying difficulty. Further
analysis reveals the effectiveness of the new approach to finding
the most effective feature descriptors or combinations of them to
extract discriminative features for different classification tasks.

I. INTRODUCTION

IMage classification is a fundamental task in computer
vision with a wide range of real-world applications, includ-

ing remote sensing, medical diagnosis, biologic identification,
and self-driving [1–3]. Image classification is the task of
assigning each image in the data set with a pre-defined class
label according to the content in the image. The task is an
important component of other computer vision tasks, such
as object recognition. However, image classification is very
challenging due to inter-class and intra-class variations in
scale, illumination, rotation, and occlusion [4].

Feature extraction is important for solving image classifi-
cation. The aim of feature extraction is to extract a set of
discriminative features from a raw image for classification.
Effective feature extraction methods can improve the perfor-
mance of a classification system [4]. Existing methods, such
as histogram of orientated gradients (HOG) [5], scale-invariant
feature transform (SIFT) [6], and local binary patterns (LBP)
[7], can extract high-level features that are invariant to certain
variations such as scale and rotation. However, these methods
are only effective for describing features from particular image
domains and using them to solve new tasks often requires
domain knowledge [8]. In the process of feature extraction,
domain experts decide not only how to extract features but also
what types of features should be extracted. Generally, there are

Corresponding Author: Ying Bi (Email: Ying.Bi@ecs.vuw.ac.nz)

two types of features, global features and local features, which
are effective for different image domains [9].

Feature learning techniques can automatically learn infor-
mative and problem-specific features from raw images for
classification without domain knowledge. The learned features
are often more effective for classification than manually ex-
tracted features [8]. As an evolutionary algorithm, genetic pro-
gramming (GP) has been applied to feature learning for image
classification and achieved promising results [8, 10, 11]. GP
can automatically evolve computer programs to solve problems
using principles of biological evolution and natural selection
[12]. Compared with other evolutionary computation (EC)
techniques, GP has a more flexible tree-based representation.
Besides, GP is well known for its high interpretability of
evolved solutions and good global search ability.

With a flexible tree-based representation, it is possible to
integrate existing image-related operators into GP to auto-
matically learn high-level features. For example, Gaussian
filter, Sobel edge detector and Laplacian of Gaussian have
been integrated into GP for feature extraction [8]. However,
the features extracted by these filtering operators may not
handle certain variations, such as rotation. Existing feature
descriptors, such as HOG, SIFT and LBP, are well-developed
and effective for dealing with certain image variations. How-
ever, these descriptors have not been systematically integrated
into GP to achieve feature learning. Therefore, this paper
proposes a new GP-based method to integrate these descriptors
to automatically learn discriminative and robust features for
image classification.

Our previous work in [13] proposed an initial method
to integrate image descriptors into GP to learn global and
local features (GP-GLF) for image classification. GP-GLF has
achieved better performance than a large number of methods
using manually-extracted features on four different binary
image classification tasks. In GP-GLF, six different root nodes
have been developed to combine the global features and local
features extracted by descriptors, which allows GP-GLF to
produce a combination of global and local features. This
design may not be effective for particular tasks. For example,
texture classification may only need global features and object
classification may only need local features. Moreover, the
performance of GP-GLF has not been examined on multi-class
image classification. Therefore, this paper develops a new GP-
based feature learning approach by addressing the limitations
of GP-GLF. The new approach aims to automatically learn



global and/or local features in a flexible way.
The overall goal of this paper is to develop a new Feature

Learning approach using GP (FLGP) to automatically select
and combine existing feature descriptors to extract rich and
discriminative global and/or local features for different image
classification tasks. To achieve this goal, a novel program
structure (individual representation), a new function set and
a new terminal set will be developed in FLGP. To effectively
learn discriminative features, a new feature learning process
and a new fitness evaluation process will be developed. The
new approach will be examined on eight different image classi-
fication data sets, including multi-class classification data sets.
Further analysis of computational cost and example solutions
will be conducted to provide deep insights into FLGP.

The main contributions of this paper are summarized in four
aspects.

1) We develop a new function set and a new terminal set for
the new FLGP approach. The new function set has three
different types of functions with different functionalities.
More importantly, five representative and well-known
feature descriptors, i.e., uniform LBP (uLBP), HOG,
SIFT, domain-independent features (DIF), and histogram
(Hist), are developed as feature extraction functions for
FLGP, where very few works have addressed this.

2) To better utilize the functions including the descrip-
tors, we develop a novel program structure for FLGP
to integrate the processes of global feature extraction
and/or local feature extraction into a single tree. The new
program structure allows FLGP to evolve solutions of
variable depths to produce various numbers of features.

3) To improve the generalization ability of the learned
features by FLGP, a new feature learning process and a
new fitness evaluation process are developed. The min-
max normalization method is employed to normalize
the features from different descriptors. A linear sup-
port vector machine (SVM) for 5-fold cross-validation
is employed to evaluate the individual based on the
normalized features.

4) The experimental results show that FLGP significantly
outperforms almost all the benchmark methods on eight
data sets. Further analysis shows that FLGP provides
tree-based solutions that make it easy to understand
which feature descriptors are selected, which regions of
interest are detected, and whether global features or local
features are extracted. This is helpful for obtaining fur-
ther insight into the target problems, which has been an
issue for many existing methods including convolutional
neural networks (CNNs).

II. BACKGROUND AND RELATED WORKS

This section describes several typical feature description
methods and introduces GP and strongly typed GP (STGP).
Then it discusses recent work related to this study and sum-
marizes the limitations.

A. Common Feature Extraction/Description Methods
Hist: Extracting histogram features from raw pixel values

is the simplest way to obtain features [14]. The Hist features

are the values of the bins in the histogram calculated using all
the pixel values of the image. The number of the bins often
equals 256 since the pixel values are in the range of [0, 255].

DIF: DIF [15] extracts mean and standard deviation values
from six regions and four lines of an image/region. The six
regions are the original image, four small subregions of the
image and the center region. The four lines are the two middle
lines of the image and two middle lines of the center region.

SIFT: SIFT [6] is a widely used keypoints detection and
description method. It employs the difference of Gaussian
(DoG) with different scales to detect extreme points. Then the
Taylor function is used to optimize and eliminate low-contrast
keypoints and the Hessian matrix is used to eliminate edge
responses. For each keypoint, SIFT produces 128 histogram
features of gradient magnitudes and orientations. Without de-
tecting keypoints, a dense SIFT method is developed to extract
features from images with less computational complexity [16].
Note that the dense SIFT method is employed in this paper
(simplified as SIFT).

HOG: HOG [5] is a well-known shape and appearance de-
scription algorithm for human detection. It contains a number
of steps, including gamma and color normalization, gradient
computation, weighted voting into spatial and orientation cells,
and contrast normalization over overlapping spatial blocks
[5]. The main idea of HOG is to extract locally normalized
histogram features of gradient orientations (cell) in a densely
overlapping grid (block).

LBP: LBP [7] is a simple but effective texture description
method. LBP compares each central pixel with its neighbor
pixels in a sliding window to generate binary codes. Then
the value of the central pixel is replaced by the sum of all
the products of the binary code and pre-defined weights. The
histogram of the generated LBP image is used as features for
image analysis. Different LBP variants have been proposed,
e.g., uniform LBP [7].

Others: Other feature extraction methods include grey-level
co-occurrence matrix (GLCM) [17] and Gabor features [3].

B. Genetic Programming (GP) and Strongly Typed GP

Inspired by the principles of biological evolution and natural
selection, GP automatically evolves computer programs for
solving particular problems [12]. GP often uses a program
tree to represent the solution [18]. For each tree, the root node
and the internal nodes are functions/operators chosen from a
function set and the leaf nodes are terminals chosen from a
terminal set. In standard GP, the functions and terminals only
deal with one type of data, e.g., float-pointing number. STGP
is a variant of the tree-based GP to cope with multiple data
types [19]. In STGP, each terminal has an input type and each
function has an input type and an output type. A function only
takes particular non-terminal or terminal as its children node.
In STGP, a program structure is often required to integrate
functions and terminals with different types into a tree-based
solution. To use GP to solve a problem, it is necessary to
carefully develop a program structure, a function set and a
terminal set.



C. GP for Feature Learning

1) Learning Features from Pre-extracted Features: The
commonly used way of GP for feature learning is to construct
high-level features using simultaneously selected subsets of
original features. Nandi et al. [20] employed GP to classify
breast masses into the malignant class and the benign class
using 22 features, i.e., shape, edge-sharpness and texture,
as inputs. Ain et al. [21] proposed a GP-based method to
feature selection using 12 domain-specific features and 59
uLBP features for skin cancer image classification. Choi and
Choi [22] developed a GP-based system for pulmonary nodule
detection on computed tomography images, where GP was
used to evolve classifiers for categorizing nodules and non-
nodules using four different types of features. However, these
aforementioned methods require human intervention to extract
features from images in advance.

2) Learning Features from Raw Pixels: Instead of using the
pre-extracted features as inputs, GP-based methods have been
proposed to automatically extract image features from raw
pixels. Atkins et al. [23] proposed a multi-tier GP algorithm to
transform raw pixels into high-level features using an image
filtering tier, an aggregation tier and a classification tier for im-
age classification. Lensen et al. [24] integrated HOG into GP
to automatically extract HOG histogram or distance features
from raw pixels. However, these two methods only produce
one high-level feature, which might not be effective for multi-
class image classification tasks. Shao et al. [8] developed a
multi-objective GP (MOGP) method to automatically learn
features using a set of image operators. However, MOGP
extracted a large number of global features, where principal
component analysis was employed to reduce the dimensional-
ity of the features. Al-Sahaf et al. [10] proposed a GP-criptorri

method to evolve texture descriptors for texture classification
using a small number of training images. The way that the GP-
criptorri solution describes features is similar to that by LBP.
The result showed that GP-criptorri is more effective than LBP
for texture classification. In [25], a variant of GP-criptorri

was developed to automatically extract a dynamic number
of texture features for classification. Knowledge transferring
across different domains has also been employed to improve
the performance of GP-criptorri [26]. However, these methods
only extract texture features, which might not be effective for
other types of images, e.g., facial images.

In summary, these aforementioned methods show the su-
periority of GP in feature learning for image classification.
However, these works have their limitations, as described
above. The potential of GP in feature learning has not been
extensively investigated. GP-GLF has demonstrated the effec-
tiveness of GP with existing well-developed image descriptors
for feature learning in image classification [13]. However,
this method has a fixed tree depth and is only able to learn
a fixed type of features. Moreover, GP-GLF has only been
examined on binary image classification tasks. Motivated by
these limitations, this paper significantly improves the method
by developing a new feature learning process, a new program
structure, a new function set, and a new terminal set. The
new method can automatically find/extract various numbers of

global and/or local features for different image classification
tasks. This new method will be examined on binary or multi-
class classification tasks with a larger number of instances.

III. THE PROPOSED APPROACH

This section describes the proposed FLGP approach in
detail. The overall algorithm, the new feature learning process
and the new fitness evaluation process, are presented first.
Then it describes the main components of FLGP, i.e., the
program structure, the function set and the terminal set.

A. Overall Algorithm

The proposed FLGP approach aims to automatically evolve
solutions that extract discriminative global and/or local fea-
tures using existing feature descriptors from the input image.
The overall feature learning process of FLGP is shown in
Fig. 1, where the left part shows the general evolutionary
learning process of GP and the right part shows the new
fitness evaluation process. The new components and the basic
configuration of the FLGP system are shown in Fig. 2.
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Fig. 1. The overall feature learning process of FLGP.
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Fig. 2. The new components and the basic configuration of the FLGP system.



As shown in Fig. 1, FLGP starts with population initial-
ization, where a number of programs/trees/individuals are
randomly generated according to the new program structure,
the new function and terminal sets. Then each individual
is evaluated using the new fitness evaluation process. After
fitness evaluation, a selection method and three genetic opera-
tors, i.e., elitism, crossover and mutation, are used to obtain a
new population for the next generation. The selection method
selects individuals with better fitness values for crossover and
mutation. The crossover and mutation operations change the
nodes or branches of the FLGP trees to search for the best
one. The evolutionary learning process is terminated when a
pre-defined termination criterion is satisfied. If the termination
criterion is not satisfied, the process of fitness evaluation and
population generation repeat again. Otherwise, the evolution-
ary process ends, and the best individual is returned.

During the evolutionary learning process, a fitness function
is used to guide the search for the best individual. The right
part of Fig. 1 shows the new fitness evaluation process in
FLGP. In this process, a training set, containing N m × l
images {Ii}Ni=1 and N labels {Yi}Ni=1, is used. Each FLGP
individual/program, as a solution to feature extraction, trans-
forms each image Ii to a vector F i with the size of S. S is the
number of the extracted features by the FLGP program. Then
{F i}Ni=1 are normalized and fed into a linear SVM together
with {Yi}Ni=1 to perform classification. The linear SVM is
employed because it is popular for image classification [8] and
has fewer parameters compared with SVMs with other kernel
functions. On image classification tasks, the classification
accuracy is the most commonly used fitness function [8, 24].
To increase the generalization ability, stratified k-fold cross-
validation (CV) is used for evaluating each individual and the
mean accuracy of the k folds is set as the fitness value. k = 5
and k = 10 are commonly used settings for k-fold CV. To
reduce the computational cost, we set k to 5 in FLGP.

1) Normalization of Extracted Features: The previous GP-
GLF [13] method does not perform feature normalization.
However, the produced features by GP-GLF are the combina-
tion of features with different scales. For example, the uLBP
features may be in the range of [0, 100] and the DIF features
are in the range of [0, 1]. This may lead to bias towards
particular types of features such as uLBP features when using
the combination of these features for classification. Therefore,
in FLGP, the min-max normalization method is used to rescale
the output features Fi to F i, as shown in Eq. 1.

F
i
=

F i −min({F i}Ni=1)

max({F i}Ni=1)−min({F i}Ni=1)
. (1)

In addition to the above differences, the FLGP approach has
a new representation (program structure), a new function set
and a terminal set, which will be described below.

B. New Program Structure

The proposed FLGP approach is based on STGP so that a
new program structure is needed. The new program structure
is extended from that of GP-GLF in [13] by improving its

flexibility. The program structure of GP-GLF has a represen-
tation with a fixed tree depth, which limits the type of output
features, i.e., the combination of global and local features. The
new program structure of FLGP addresses these limitations
by using a flexible structure to represent more possible ways
of combining global and local features. The new program
structure allows each solution to have a flexible tree depth and
to produce various numbers of global and/or local features FS .

The new program structure is shown in Fig. 3 (a). It contains
the tiers of input, region detection, feature extraction, feature
concatenation, and output, where different functions are used
at different functional tiers. Region detection tier aims to detect
small regions of interest from an input image. The region
detection tier may exist or not in FLGP trees, which indicates
that the solutions of FLGP can be constructed without any
region detection. This allows FLGP to produce only global
features. Feature extraction tier extracts global features from
an input image or local features from the detected regions.
The feature extraction functions are developed in the global
and local scenarios. Feature concatenation tier concatenates the
features from its child nodes to a feature vector. To further
demonstrate the program structure, a typical example pro-
gram/solution of FLGP is shown in Fig. 3 (b), where different
colors indicate inputs, outputs and different functions. In this
program, there are region detection functions, Region S and
Region R, feature extraction functions, G SIFT , L DIF ,
L uLBP , and feature concatenation function, FeaCon2.

The new program structure allows FLGP to produce three
types of features. The first type is a combination of global and
local features. As shown in the example program in Fig. 3(b),
the output features are a combination of global SIFT features,
local DIF features and local uLBP features. The total number
of the output features S equals s1 + s2 + s3, where s1 is the
number of the SIFT features, s2 is the number of the DIF
features, and s3 is the number of the uLBP features. These
features are extracted by the G SIFT , L DIF and L uLBP
functions, respectively. The second type is a combination of
local features. This can be achieved by building an FLGP tree
where each input image (the Image terminal) must connect
with the region detection function, as shown in Fig. 4 (a). The
third type is a combination of global features, which can be
achieved by building an FLGP tree without region detection
function, as shown in Fig. 4 (b).

C. Function Set

According to the new program structure, the function set of
FLGP has three different types of functions: region detection
functions, feature extraction functions and feature concatena-
tion functions.

1) Region Detection Functions: The region detection func-
tions are Region S and Region R, which detect square and
rectangle regions from an image, respectively. The Region S
function takes an image Image (Ii, the size is m × l), X ,
Y , and Size as inputs and returns a square region. The
coordination of the top-left point of the region in Image is
(X , Y ) and the size of the region is Size. Thus the detected
region by Region S is Image[X : min((X+Size), m), Y :



L_DIF

Region_S

Image SizeYX

FeaCon2

L_uLBP

Region_R

Image WidthYX Height

G_SIFT

Image

F1, F2, ... , Fs1 Fs1+1, Fs1+2, ... , Fs1+s2 Fs1+s2+1, Fs1+s2+2, ... , Fs1+s2+s3

FeaCon2

(b) Example Program

Input

Region Detection 

Feature Extraction

Feature Concatenation

Output

(a) Program Structure

Fig. 3. The new program structure of FLGP and an example program that describes a combination of global and local features.

L_DIF

FeaCon2 L_uLBP

L_SIFT

FeaCon2 FeaCon3

FsFs

Region_RRegion_S

Region_S

G_DIF L_uLBPG_SIFT

(a)

(b)

Fig. 4. Two example program structures to describe (a) a combination of
local features, and (b) a combination of global features.

min((Y + Size), l)]. Similar to Region S, the Region R
function detects the Image[X : min((X+Width), m), Y :
min((Y + Height), l)] region by taking the Image, X ,
Y , Width, and Height as inputs. In the two functions, the
Image, X , Y , Size, Width, and Height are terminals,
which will be described in the next subsection. The values
of these terminals are randomly generated from pre-defined
ranges and can be changed by the mutation operator during
the evolutionary learning process.

2) Feature Extraction Functions: GP-GLF [13] uses
seven descriptors, including GLCM and Gabor features. Since
GLCM, uLBP or Gabor is able to describe texture features,
FLGP only uses uLBP instead of the three texture descriptors.
Therefore, five representative descriptors: DIF, Hist, SIFT,
HOG, and uLBP, are used in FLGP as feature extraction
functions to avoid a big search space. The five descriptors
have been introduced in Subsection II-A and are representative
methods to describe distribution, texture, shape, and appear-
ance information of images. In FLGP, the five methods are

developed in global and local scenarios. The methods in the
global scenario are G DIF , G Hist, G SIFT , G HOG,
and G uLBP , which extract features from a whole image.
The methods in the local scenario are L DIF , L Hist,
L SIFT , L HOG, and L uLBP , which extract local fea-
tures from a detected region. The functions in the global
scenario directly use the Image terminal as their children
node, while the functions in the local scenario employ the
region detection functions as their children nodes. Each feature
extraction function transforms an image or a region into a set
of features Fs, where the number of features is s. The details
of these functions are listed in Table I. It is obvious that each
function extracts a different number (s) of features from an
image/region, as shown in the fourth column of Table I.

3) Feature Concatenation Functions: The feature concate-
nation functions are FeaCon2 and FeaCon3, which con-
catenate two feature vectors ( Fs1 and Fs2 ) and three feature
vectors (Fs1 , Fs2 and Fs3 ) to a feature vector FS respectively.
The children nodes of the two functions can be the feature
extraction functions and/or the feature concatenation functions.
This allows FLGP to produce various numbers of features.

D. Terminal Set

The new terminal set has six different terminals: Image, X ,
Y , Size, Width, and Height. The Image terminal indicates
the input gray-scale image, which is a two-dimension array
(m × l) with values in the range of [0, 1] as the image is
normalized by dividing 255. The other terminals are ephemeral
random constants of FLGP. X and Y indicate the coordinates
of the top-left point of a detected region in the image and are
the parameters of the Region S and Region R functions.
They are integers in the range of [0, m− 20] and [0, l− 20],
respectively. The Size, Width and Height terminals are the
size or width and height of a detected region. Their values are
in the range of [20, 50], which is smaller than that in [13] to
narrow the search space.



TABLE I
FEATURE EXTRACTION FUNCTIONS.

Methods Input Output #Features s Description
G DIF/L DIF 1 Image/Region 1 Vector 20 Domain independent features [15].
G Hist/L Hist 1 Image/Region 1 Vector 32 Histogram features of the image/region [14]. The

number of bins is set to 32.
G SIFT/L SIFT 1 Image/Region 1 Vector 128 SIFT features. The image or detected region is

considered as a keypoint [16].
G HOG/L HOG 1 Image/Region 1 Vector Flexible HOG features [5]. G HOG/L HOG extracts

the mean value of each 20 × 20 / 10 × 10 grid
with a step of 10 from a HOG image.

G uLBP/L uLBP 1 Image/Region 1 Vector 59 Uniform LBP histogram features [7]. In G uLBP
and L uLBP , the radius is 1.5 and the number
of neighbors is 8.

IV. EXPERIMENT DESIGN

A number of experiments have been conducted to evaluate
the performance of FLGP for feature learning in image classi-
fication. The experiments aim to investigate whether FLGP can
achieve better performance than existing GP-based methods,
CNN-based methods and traditional methods using various
features. This section describes the design of the experiments.

A. Data Sets

Eight different data sets of varying difficulty are used in
the experiments to examine the effectiveness of FLGP. The
data sets contain five types of tasks, i.e., facial expression
classification (FEI 1 [27], FEI 2 [27] and JAFFE [28]), object
classification (EYALE [29] and ORL [30]), scene classification
(SCENE [31]), texture classification ( KTH [32]), and painting
classification (VGDB [33]).

FEI 1 and FEI 2 [27] contain frontal facial images with
natural or smile expression. The images in the two data sets
are sampled from 200 Brazilian with different appearance,
hairstyle and adorn. VGDB is to identify Vincent Van Gogh’s
paintings [33], which is very challenging because there are not
particular objects in the images and the painting style is hard to
capture. ORL [30] is to recognize faces of 40 different people
from images with open or closed eyes, smiling or non-smiling,
and glasses or non-glasses. JAFFE [28] has 213 images of 7
different expressions sampled from 10 Japanese females. The
seven expressions are happiness, surprise, sadness, fear, anger,
natural, and disgust. KTH [32] is a texture classification task
of 10 classes. The images are sampled in nine scales with
three poses under four illumination conditions. EYALE [29]
is a face classification task, having 2424 facial images of 38
different people. The facial images are sampled under different
poses and illumination conditions. SCENE [31] contains 3859
natural images in 13 groups, including the coast, forest,
highway, mountain, and street. The natural images are acquired
under different conditions and have high variations, which
makes the task difficult.

Table II describes the details of these data sets. These
data sets are split into the training and test sets according

to commonly used proportions. For the FEI 1, FEI 2, VGDB,
and KTH data sets, 75% images are used for training and 25%
images are used for testing. For ORL, seven images per class
are used for training and the remaining images are used for
testing. For JAFFE, 20 images per class are used for training
and the others are for testing. Since the EYALE and SCENE
data sets are large, they are split into 50% and 50% to form
the training set and the test set, respectively. Fig. 5 and Fig. 6
show several example images from the eight data sets.

TABLE II
DATA SET PROPERTIES.

Data set Image size #
Classes

Training
set

Test
set

FEI 1 130×180 2 150 50
FEI 2 130×180 2 150 50
VGDB 200×200 2 247 83
ORL 112×92 40 280 120
JAFFE 128×128 7 140 73
KTH 100×100 10 600 210
EYALE 100×100 38 1,209 1,215
SCENE 100×100 13 1,928 1,931

   FEI_1                   FEI_2                               VGDB      

                                                ORL

                   JAFFE                                           KTH

Fig. 5. Example images from the FEI 1, FEI 2, VGDB, ORL, JAFFE, and
KTH data sets.



                                            SCENE

                                            EYALE

Fig. 6. Example images from the EYALE and SCENE data sets.

B. Benchmark Methods

The benchmark methods are five GP-based methods, eight
traditional methods using different features, and three CNNs.

1) GP-based Methods: Five GP-based methods are GP-
GLF [13], 2TGP [34], DIF+GP [15], Hist+GP, and uLBP+GP
[21]. Since the new FLGP approach is an extension of GP-
GLF, it is necessary to compare FLGP with GP-GLF. The
2TGP method automatically generates a high-level feature
from the input image with simultaneous region detection,
feature extraction and feature construction. DIF+GP, Hist+GP
and uLBP+GP construct features for classification from pre-
extracted features, i.e., 20 DIF features, 64 Hist features and
59 uLBP features, respectively. Since the 2TGP, DIF+GP,
Hist+GP, and uLBP+GP methods are originally designed for
binary classification, they are only used for comparisons
on binary image classification tasks, i.e., FEI 1, FEI 2 and
VGDB. Because of the high computational cost of GP-GLF,
it is too expensive to run it on the multi-class classification
tasks (probably needs several months to obtain all the results).
Therefore, the comparisons of FLGP and GP-based methods
are only on the binary image classification tasks.

2) Traditional Methods: Eight traditional methods use dif-
ferent well-known features are used for comparisons. The
features are DIF [15], Hist [14], GLCM [17], Gabor [35],
SIFT [6], HOG [5], LBP [7], and uLBP [7] features. These
features are fed into a linear SVM for classification. The
methods for extracting these features have been introduced
in Section II. The DIF, SIFT, HOG, and ulBP features are
extracted using the same functions as those employed in the
function set of FLGP in the global scenario. The Hist features
are 256 histogram features and the LBP features are 256 LBP
histogram features. The GLCM features are the statistics of
each GLCM, i.e., contrast, dissimilarity, homogeneity, energy,
correlation, and ASM. Each GLCM is calculated using four
different orientations (πµ/4, µ ∈ {0, 1, 2, 3}). The Gobor fea-
tures are the mean values of each 32×32 grid of the convolved
images using different Gabor filters. Forty commonly used
Gabor filters are used, involving eight different orientations
(πµ/8, µ ∈ {0, . . . , 7}) at five scales (ν ∈ {0, . . . , 4}) [35].

3) CNN-based Methods: CNNs are well-known for feature
learning and image classification. Three CNN methods with
different architectures are employed for comparison. They
are the LeNet-5 [36], a five-layer CNN (CNN-5) [8] and an
eight-layer CNN (CNN-8). The three methods use the popular
rectified linear unit (ReLU) as the activation function and the
softmax for classification. Dropout is added after the pooling
layer and the first fully connected layer with 0.25 and 0.5

probabilities to avoid overfitting [37]. In the three methods,
the loss function is cross-entropy and the adaptive subgradient
method is used to train the models [38]. The number of epochs
is set to 500, which allows the three methods to be fully trained
on these data sets.

C. Parameter Settings

Parameter settings for the proposed FLGP approach are
the commonly used settings in the community of GP, which
is also the same as that in the GP-GLF method [13]. Note
that we aim to develop a general method that with common
settings can achieve a good performance on a variety of image
classification tasks. Therefore, parameter tuning is not con-
ducted for FLGP, although it could improve the performance.
The other four GP-based benchmark methods use the same
parameter settings as FLGP except for the population size.
The population size for the four GP-based methods is 500,
while FLGP and GP-GLF use a smaller size of 100 in order
to reduce the computational cost. The crossover, mutation,
and elitism rates are 0.8, 0.19, and 0.01, respectively. The
selection method is Tournament selection with size 7. The tree
generation method is ramped-half-and-half. The tree depth is
between 2 and 6. The termination criterion for all the GP
methods is reaching the maximum number of generations.

D. Test Process and Experiment Settings

The overall test process of FLGP and the eight traditional
methods are the same. The FLGP solution is used as a feature
extraction/description method to transform the training set and
the test set. Before feeding the data sets to SVM, the min-
max normalization is conducted on the transformed data set.
Note that the normalization for the test set is based on the
min and max values of features in the training set. A linear
SVM is employed to learn a classifier using the transformed
and normalized training set and the classifier is tested on the
transformed and normalized test set. Finally, the classification
accuracy of the test set is reported.

The implementations of all the GP-based methods are
based on the DEAP (Distributed Evolutionary Algorithm in
Python) [39] package and the implementation of the linear
SVM is based on the scikit-learn [40] package with default
parameter settings. In SVM, the penalty parameter (C) is 1.
The experiments of GP-based methods and traditional methods
run independent 30 times and the mean accuracy of the 30
runs is reported. The experiments of the three CNNs run
independent 10 times due to the high computational cost.

V. RESULTS AND DISCUSSIONS

This section discusses and compares the classification re-
sults of the proposed FLGP approach, the five GP-based
methods, the eight traditional methods, and the three CNNs
on the eight data sets. The classification results are listed in
Tables III and IV. The results include maximum accuracy
(Max), mean accuracy and standard deviation (Mean ± Std.).
Wilcoxon rank-sum test with a 5% significance level is used
to compare FLGP with a benchmark method to show the



significance of performance improvement. The symbols “+”
or “–” in these tables indicate that FLGP is significantly
better or significantly worse than the compared method. The
symbol “=” indicates the performance of FLGP is similar to
the compared method. In Tables III and IV, each small block
lists the results on one data set, and the maximum classification
accuracy is highlighted in bold. The final row of each block
summarizes the overall results of the significance test.

A. Overall Classification Performance

As mentioned in Section IV-B, the GP-GLF and the other
four GP-based benchmark methods are only used for com-
parisons on binary classification tasks. Thus, there are 16
benchmark methods on FEI 1, FEI 2 and VGDB and 11
benchmark methods on the remaining data sets. From the final
rows of Tables III and IV, it is obvious that FLGP achieves
significantly better or similar performance in almost all the
comparisons. Specifically, FLGP gains 97 “+”, 5 “=” and 1 “–”
in the total 103 comparisons. FLGP significantly outperforms
all the benchmark methods on one binary classification data
set, i.e., FEI 2, and on five multi-class classification data
sets, i.e., ORL, JAFFE, KTH, EYALE, and SCENE. FLGP
performs significantly better than or similar to any of the 16
benchmark methods on FEI 1.

FLGP gains the maximum accuracy and the maximum mean
accuracy among all the methods on seven data sets except for
VGDB. Specifically, FLGP improves the maximum accuracy
by 11% on JAFFE, 8.1% on KTH, 7.8% on SCENE, 6% on
FEI 2, 1.7% on ORL, and 0.5% on EYALE. FLGP improves
the mean accuracy by 9% on SCENE, 6.9% on KTH, 2.5% on
FEI 2, 2.2% on JAFFE, and 1.3% on ORL. From the results, it
is clear that FLGP is more effective than any of the benchmark
methods on different types of image classification tasks.

The experimental results demonstrate the effectiveness of
FLGP for feature learning in image classification. The main
reasons to explain why FLGP is effective are the developments
of the feature learning process, the flexible program structure,
the function set and the terminal set in FLGP. With the
utilization of five representative feature descriptors in global
and local scenarios, respectively, FLGP can extract high-level
invariant features with the potential of increasing classification
performance. The flexible program structure enables FLGP to
effectively search for optimal functions and terminals to form
solutions that can produce various numbers of global and/or
local features. The overall feature learning process enables
FLGP to find optimal solutions with high generalization abil-
ity.

B. FLGP vs Five GP-based Methods

1) FLGP vs GP-GLF: Table III shows that FLGP achieves
significantly better performance than GP-GLF on the three
binary classification data sets. Compared with GP-GLF, FLGP
improves the mean accuracy by 6.7% on FEI 1, 10.8% on
FEI 2 and 9.8% on VGDB. FLGP improves the maximum
accuracy by 2% on FEI 1, 8% on FEI 2 and 7.3% on VGDB.
From the results, it is clear that FLGP is more effective than
GP-GLF for feature learning in image classification.

As mentioned in Section I, FLGP is developed by ad-
dressing the limitations of GP-GLF. The results show that
this goal was successfully achieved. FLGP is more effective
than GP-GLF by producing three types of features, i.e., a
combination of global and local features, a combination of
global features, a combination of local features. This allows
FLGP to automatically find suitable types and numbers of
features to improve the classification accuracy for a given task.

2) FLGP vs The Other Four GP-based Methods: From Ta-
ble III, it is noticeable that FLGP achieves significantly better
results in 11 comparisons and similar results in 1 comparison
out of the total 12 comparisons. Importantly, compared with
the four GP-based methods (2TGP, DIF+GP, Hist+GP, and
uLBP+GP), FLGP improves the mean accuracy by over 7%
on FEI 1 and FEI 2. Moreover, FLGP achieves the maximum
accuracy on FEI 1 and FEI 2. On VGDB, FLGP obtains a
similar performance to Hist+GP. Hist+GP uses 256 features
while the G Hist/L Hist function in FLGP only extracts 32
features, which may be the reason that FLGP cannot achieve
a performance as good as Hist+GP.

With automatically extracting a set of global and/or local
features from raw pixels, FLGP achieves significantly better
performance than DIF+GP, Hist+GP and uLBP+GP in most
comparisons. The results show the potential of GP in feature
learning from raw pixels. 2TGP can learn features from raw
pixels. However, FLGP is more effective than 2TGP on the
three data sets. 2TGP learns only one high-level feature from
an image to perform classification. In contrast, FLGP learns
a set of high-level features from an image, which is more
effective for classification.

C. FLGP vs Eight Traditional Methods

It can be seen from Tables III and IV that FLGP achieves
significantly better results in 62 comparisons out of the total 64
comparisons. Specifically, FLGP performs significantly better
than any of the eight benchmark methods on seven data
sets except for VGDB. Compared with DIF, Hist, GLCM,
Gabor, SIFT, HOG, LBP, and uLBP, FLGP improves the
mean accuracy by 10.8% on EYALE, 9.1% on SCENE, 7.1%
on JAFFE, and 6.9% on KTH. Moreover, FLGP obtains the
maximum accuracy on seven data sets except for VGDB.
FLGP has an increase by over 10% in terms of the maximum
accuracy on FEI 2, JAFFE, EYALE, and SCENE. The VGDB
data set is the only one that FLGP performs worse than one
of the eight traditional methods, i.e., LBP. FLGP does not use
the LBP descriptor so that it cannot achieve a performance as
good as the LBP features on VGDB.

The experimental results show that the features learned
by FLGP are more effective than the well-known hand-
crafted features in the eight methods for image classification.
Using traditional methods often requires domain expertise to
extract a set of effective features for classification. The new
FLGP approach can automatically learn features from images
without domain knowledge. The design of FLGP enables it
to automatically learn various numbers of features in three
types, i.e., a combination of global and local features, a
combination of global features and a combination of local



TABLE III
CLASSIFICATION ACCURACY (%) OF THE PROPOSED FLGP APPROACH AND SIXTEEN BENCHMARK METHODS ON THREE BINARY DATA SETS:

FEI 1, FEI 2 AND VGDB.

FEI 1 FEI 2 VGDB
Methods Max Mean±Std. Max Mean±Std. Max Mean±Std.
2TGP 96.0 88.1±6.2+ 94.0 85.5±6.0+ 63.9 61.6±1.5+
DIF+GP 80.0 56.7±6.9+ 72.0 60.3±8.4+ 68.7 61.4±3.5+
Hist+GP 70.0 48.9±7.2+ 60.0 48.8±6.1+ 84.3 76.0±2.6=
uLBP+GP 66.0 50.9±7.5+ 72.0 48.7±7.9+ 79.5 69.4±4.4+
GP-GLF 96.0 89.1±3.9+ 92.0 82.5±5.8+ 74.6 65.1±4.7+
DIF 74.0 61.1±4.9+ 72.0 62.8±6.1+ 66.3 55.6±10.3+
Hist 54.0 48.1±3.4+ 54.0 50.1±2.5+ 62.7 62.2±0.8+
GLCM 50.0 49.7±0.7+ 54.0 50.1±0.7+ 62.7 53.3±9.8+
Gabor 82.0 71.6±7.9+ 74.0 65.7±5.1+ 63.9 56.0±8.3+
SIFT 82.0 82.0±0.0+ 78.0 78.0±0.0+ 60.2 60.2±0.0+
HOG 94.0 94.0±0.0+ 88.0 88.0±0.0+ 57.8 57.2±0.7+
LBP 68.0 62.5±3.5+ 66.0 57.6±3.6+ 84.3 80.6±3.2–
uLBP 64.0 56.9±5.2+ 56.0 51.9±2.3+ 81.9 71.5±8.1=
LeNet-5 98.0 94.4±2.0= 94.0 90.8±1.8+ 65.1 58.1±4.8+
CNN-5 98.0 95.6±1.5= 90.0 85.0±3.0+ 65.1 61.5±2.1+
CNN-8 98.0 94.2±2.1= 94.0 90.0±2.3+ 61.5 56.9±4.6+
FLGP 98.0 95.8±3.2 100 93.3±3.8 81.9 74.9±3.7
Overall 13+, 3= 16+ 13+, 2=, 1–

TABLE IV
CLASSIFICATION ACCURACY (%) OF THE PROPOSED FLGP APPROACH AND ELEVEN BENCHMARK METHODS ON FIVE MULTI-CLASS DATA SETS:

ORL, JAFFE, KTH, EYALE, AND SCENE.

ORL JAFFE KTH EYALE SCENE
Methods Max Mean±Std. Max Mean±Std Max Mean±Std. Max Mean±Std. Max Mean±Std.
DIF 85.0 85.0±0.0+ 35.6 35.6±0.0+ 56.2 56.2±0.0+ 26.4 26.4±0.0+ 33.5 33.5±0.0+
Hist 97.5 97.5±0.0+ 19.2 19.2±0.0+ 51.4 51.4±0.0+ 11.0 11.0±0.0+ 21.2 21.2±0.0+
GLCM 2.5 2.5±0.0+ 15.1 15.1±0.0+ 23.3 23.3±0.0+ 5.1 5.0±0.1+ 13.9 13.9±0.0+
Gabor 59.2 57.1±0.9+ 46.6 43.2±1.6+ 44.3 42.9±0.7+ 36.7 36.3±0.2+ 22.7 22.3±0.2+
SIFT 98.3 98.3±0.0+ 74.0 74.0±0.0+ 81.4 81.4±0.0+ 88.4 88.4±0.0+ 63.1 63.1±0.0+
HOG 96.7 96.7±0.0+ 72.6 72.6±0.0+ 51.4 51.4±0.2+ 74.3 74.3±0.0+ 30.8 30.8±0.0+
LBP 87.5 87.5±0.0+ 21.9 21.9±0.0+ 87.6 87.6±0.0+ 46.4 46.4±0.0+ 62.5 62.5±0.0+
uLBP 94.2 94.2±0.0+ 23.3 23.3±0.0+ 81.0 81.0±0.0+ 56.1 56.1±0.0+ 66.1 66.1±0.0+
LeNet 93.3 89.9±1.9+ 79.5 68.9±7.0+ 78.6 72.0±6.4+ 92.4 89.4±1.6+ 54.2 51.1±2.4+
CNN-5 97.5 96.3±0.8+ 80.8 78.9±1.3+ 84.3 81.5±1.8+ 99.3 98.6±0.5+ 58.9 55.4±1.4+
CNN-8 96.7 94.2±1.8+ 61.6 52.5±6.2+ 82.4 80.7±1.5+ 90.9 88.2±1.0+ 69.2 66.2±2.0+
FLGP 100 99.6±0.7 91.8 81.1±4.7 95.7 94.5±0.9 99.8 99.2±0.4 77.0 75.2±0.7
Overall 11+ 11+ 11+ 11+ 11+

features. The features learned by FLGP are more effective for
image classification than the manually extracted features.

D. FLGP vs Three CNN-based Methods

Compared with LeNet, CNN-5 and CNN-8, FLGP achieves
significantly better performance on seven data sets and similar
performance on the remaining one, FEI 1. Importantly, FLGP
improves the mean accuracy by over 13% on VGDB and KTH,
and by over 9% on SCENE compared with the three CNNs.
Surprisingly, CNN-8 performs worse than CNN-5 on six data

sets except for FEI 2 and SCENE, which indicates that an
increase in the depth of CNNs cannot guarantee an increase
in classification accuracy. A more complex model may require
more training instances/samples in order to obtain satisfactory
results. Compared with the three methods with pre-defined
model complexity, the flexible representation allows FLGP to
evolve solutions of variable depths, which is more flexible for
solving different image classification tasks.

The results indicate that the features learned by FLGP are
more effective than those by the three CNNs with different
architectures for image classification. Compared with the three



CNNs, FLGP uses a simpler program structure and a set of
functions and terminals, but it achieves better performance on
different types of data sets. This main reason is that FLGP
learns various numbers and types of features, which is more
flexible than the three CNNs. FLGP can learn not only global
features but also local features from automatically detected
regions. However, it may be difficult for the three CNNs to
learn effective local features from the whole input image.

VI. FURTHER ANALYSIS

This section further compares FLGP with GP-GLF on the
computational cost. Then it deeply analyzes the best solutions
evolved by FLGP to fully understand why it achieves good
performance.

A. FLGP vs GP-GLF on Computational Cost

The comparisons of FLGP and GP-GLF in training time
and testing time on each of the three data sets are shown
in Fig.7. It is obvious that FLGP is much faster than GP-
GLF in both training and testing. FLGP uses less than 6 hours
for training on each data set, while GP-GLF uses more than
8 hours on FEI 1 and FEI 2 and more than 80 hours on
VGDB for training. The VGDB data set is very challenging so
that GP-GLF uses over 80 hours to find an optimal solution.
FLGP significantly reduces the computational cost. The testing
time of FLGP and GP-GLF on FEI 1 and FEI 2 are within
0.2 minutes. The testing time of GP-GLF on VGDB is over
0.4 minutes, while FLGP needs less than 0.1 minutes for
testing. The comparisons demonstrate that FLGP is faster
than the previous GP-GLF method in [13]. FLGP has a more
flexible program structure and a smaller function set than GP-
GLF, which improve FLGP’s search efficiency and reduce the
complexity of the evolved solutions.
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Fig. 7. The training (left) and testing (right) time of FLGP and GP-GLF on
the FEI 1, FEI 2 and VGDB data sets (Note that the GP-GLF method has
only been examined on binary classification data sets).

B. Analysis on Example Solutions of FLGP

1) An Example Solution on FEI 2: An example solution
of FLGP on the FEI 2 data set is visualized in Fig. 8. This
example solution achieves 100% classification accuracy on
both the training and test sets. Two example images from
the two classes (smile and natural) are used for visualization
to show what and how features are extracted. This solution
detects a 50 × 50 region using Region S and a 38 × 46

rectangle region using Region R from the input image. From
each detected region, it extracts 128 SIFT features using
L SIFT . Together with the extracted 20 DIF features from
the whole image by G DIF , the solution is able to produce
276 features from an input image.

L_SIFT L_SIFT G_DIF

276 Features

FeaCon3(L_SIFT(Region_S(Image, 112, 11, 50)), 
L_SIFT(Region_R(Image, 130, 64, 38, 46)), G_DIF(Image))

L_SIFT L_SIFT G_DIF

276 Features

Fig. 8. An example of best-of-the-run solution evolved by the proposed FLGP
approach on the FEI 2 data set and two example images are used as the inputs
of the example solution to show the process of feature extraction.

From Fig. 8, it can be seen that the Region S function
detects the chin and mouth area of the left face and the
Region S function detects a similar area of the right face. It is
obvious that the two regions capture the most discriminative
information between the two different classes. For example,
the detected area contains the teeth in the happy face image
but not in the natural face image and captures the difference
in mouth shapes between the two expressions.

This example solution finds a combination of local SIFT
features and global DIF features for classification. The com-
bined features are more effective for classification than the in-
dividual global DIF and SIFT features. The traditional method
using DIF features only achieves a maximum accuracy of 72%
and the method using SIFT features only achieves a maximum
accuracy of 78% on FEI 2. The example solution improves the
classification performance by detecting the regions of interest
and extracting meaningful local features from the detected
regions. The analysis shows that FLGP detects informative
regions and extracts discriminative local and global features
for classification.

2) Analysis on the Feature Extraction Functions: To fur-
ther analyze FLGP, ten best FLGP solutions of each run
(totally 300 solutions) on each data set are recorded. The
frequency of the ten feature extraction functions in the global
(G DIF , G Hist, G SIFT , G HOG and G uLBP ) and
local (L DIF , L Hist, L SIFT , L HOG, and L uLBP )
scenarios in these solutions are ranked. The results of the
ranking are listed in Table V, where 1 indicates the most
frequently used function and 10 indicates the least frequently
used function in these solutions. From Table V, it is clear
that the frequency-rank of the feature extraction functions



TABLE V
RANKING OF ALL THE FEATURE EXTRACTION FUNCTIONS IN 300 BEST-OF-THE-RUN PROGRAMS OF FLGP ON EACH DATA SET.

Function FEI 1 FEI 2 VGDB ORL JAFFE KTH EYALE SCENE
G DIF 5 9 7 7 7 5 8 4
G Hist 10 10 3 5 9 6 5 6
G SIFT 8 5 8 1 2 2 3 2
G HOG 3 4 10 4 5 7 9 9
G uLBP 9 7 1 2 10 1 4 1
L DIF 6 6 5 9 3 4 7 7
L Hist 4 8 2 6 8 3 6 8
L SIFT 1 1 9 10 1 10 1 10
L HOG 7 3 4 8 4 9 10 5
L uLBP 2 2 6 3 6 8 2 3

varies with the data sets. Specifically, the L SIFT function
is the most frequently used on FEI 1, FEI 2, JAFFE, and
EYALE, the G uLBP function is the most frequently used
on VGDB, KTH and SCENE, and the G SIFT function is
the most frequently used on ORL. Moreover, the frequently
used functions on one data set may be less frequently used
on the other data sets. For example, L SIFT is the most
frequently used on four data sets but it is the least frequently
used on ORL, KTH and SCENE. The G Hist function is
the least frequently used on FEI 1, FEI 2 and JAFFE, but it
is frequently used on VGDB. This confirms the difficulty of
feature extraction as different data sets need various types of
features. In contrast, FLGP automatically finds the best feature
extraction methods or combinations of them to extract features.

It can be seen from Table V that FLGP learns more local
features than global features on face data sets, i.e., FEI 1,
FEI 2, JAFFE, and EYALE, which confirms that local features
are more effective for object classification. In contrast, FLGP
learns more global features than local features on the non-
object data sets, i.e., VGDB, KTH and SCENE, as global
features are more effective. The analysis shows that FLGP
learns the best feature extraction functions or combinations of
them to extract effective global and/or local features for image
classification.

VII. CONCLUSIONS

The aim of this paper was to develop an effective GP-based
approach that uses existing well-developed feature descrip-
tors to learn global and/or local features for different image
classification tasks. This goal was successfully achieved by
proposing the FLGP approach with a new program structure,
a new function set and a new terminal set and examining
FLGP on eight different image data sets of varying difficulty.
Specifically, five existing feature descriptors, i.e., Hist, DIF,
SIFT, HOG, and uLBP, were employed in FLGP as functions
in the global and local scenarios. FLGP was compared with
a number of benchmark methods to show its effectiveness.
Example solutions of FLGP were visualized and analyzed to
show the good interpretability of the solutions.

Experimental results demonstrated that FLGP achieved sig-
nificantly better performance in almost all the comparisons
on different image classification tasks. The results confirmed

the capability of FLGP on automatically learning effective
global and/or local features for achieving high classification
accuracy. The comparisons of FLGP and GP-GLF showed that
FLGP significantly improved the classification performance by
using a flexible program structure, a new function set and a
new feature learning process. The comparisons of FLGP and
the other four GP-based methods suggested that it is more
effective to automatically learn a set of high-level features
from raw pixels than to construct one high-level feature
for image classification. Compared with the eight traditional
methods, FLGP achieved better classification accuracy by
automatically learning various types and numbers of global
and/or local features. The comparisons of FLGP and the three
CNN methods demonstrated that FLGP was more effective
by evolving solutions of variable lengths. Furthermore, FLGP
can learn discriminative local features, which may be difficult
to achieve using the three CNN methods. Further analysis of
computational cost demonstrated that FLGP was faster than
GP-GLF in both training and testing. The analysis of the
example solutions of FLGP confirmed the good interpretability
of the solutions and revealed that FLGP learned discriminative
features using a simple solution. The analysis also revealed
that FLGP detected informative regions and found the most
effective feature extraction functions to extract features from
the regions/images.

This paper has shown the potential of GP in feature learning
for image classification. The FLGP approach learns features
without human intervention and provides solutions with high
interpretability. In the future, we will develop a new GP
approach with deep structures for image classification on more
difficult data sets, such as ImageNet.
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