
IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 1

A Divide-and-Conquer Genetic Programming
Algorithm with Ensembles for Image Classification

Ying Bi, Member, IEEE, Bing Xue, Senior Member, IEEE, and Mengjie Zhang, Fellow, IEEE

Abstract—Genetic programming (GP) has been applied to
feature learning in image classification and achieved promising
results. However, one major limitation of existing GP-based
methods is the high computational cost, which may limit their
applications on large-scale image classification tasks. To address
this, this paper develops a divide-and-conquer GP algorithm with
knowledge transfer and ensembles to achieve fast feature learning
in image classification. In the new algorithm framework, a divide-
and-conquer strategy is employed to split the training data and
the population into small subsets or groups to reduce compu-
tational time. A new knowledge transfer method is proposed
to improve GP learning performance. A new fitness function
based on log-loss and a new ensemble formulation strategy are
developed to build an effective ensemble for image classification.
The performance of the proposed approach has been examined
on 12 image classification datasets of varying difficulty. The
results show that the new approach achieves better classification
performance in significantly less computation time than the
baseline GP-based algorithm. The comparisons with state-of-the-
art algorithms show that the new approach achieves better or
comparable performance in almost all the comparisons. Further
analysis demonstrates the effectiveness of ensemble formulation
and knowledge transfer in the proposed approach.

Index Terms—Genetic Programming; Feature Learning;
Knowledge Transfer; Ensemble Learning; Divide-and-Conquer;
Image Classification.

I. INTRODUCTION

IMAGE classification is a supervised learning task, where
labelled training data are used to build a classifier for

classifying images based on their content in the images.
The original training data often consist of n images with
class labels, i.e., Dtrain = {(x1, y1), . . . , (xn, yn)}, where
x ∈ Rm×l represents a grey-scale image with size m × l,
and y ∈ Z represents the class label (the total number of
classes is C). The pixel values of the images can be directly
used for classification, but may not be effective because image
data often have high variations in scale, rotation, viewpoint,
and illumination. Instead, high-level image features, which
are invariant to certain variations, are often used for effective

This work was supported in part by the Marsden Fund of New Zealand Gov-
ernment under Contracts VUW1509, VUW1615, VUW1913 and VUW1914,
the Science for Technological Innovation Challenge (SfTI) fund under grant
E3603/2903, the University Research Fund at Victoria University of Welling-
ton grant number 223805/3986, MBIE Data Science SSIF Fund under the
contract RTVU1914, and National Natural Science Foundation of China
(NSFC) under Grant 61876169.

The authours are with School of Engineering and Computer
Science, Victoria University of Wellington, Wellington 6140, New
Zealand (e-mail: ying.bi@ecs.vuw.ac.nz; bing.xue@ecs.vuw.ac.nz;
mengjie.zhang@ecs.vuw.ac.nz).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

classification. Image features can be extracted from images
using manually designed descriptors or learned using feature
learning techniques [1]. Typically, the learned features are
often more effective for image classification than the manually
designed features and do not require domain knowledge [2, 3].
Typical methods that can learn image features include convolu-
tional neural network (CNNs) [2, 3] and genetic programming
(GP) [4, 5, 6]. CNNs often require extensive expertise to
design the architecture, which affects the performance of
CNNs on particular data [7]. Compared with CNNs, GP has
a flexible variable-length representation and can automatically
find solutions without predefined structures. In addition, the
solutions of GP often provide high interpretability, which can
be seen from the example GP trees or the learned features
visualised in [5, 8].

As an evolutionary computation (EC) algorithm, GP au-
tomatically evolves computer programs to solve problems
without predefined solution structures [9]. GP uses a tree-based
representation and iteratively searches for the best tree based
on the principles of biologic evolution. GP has been used to
automatically learn effective features for image classification
and achieved promising results [5, 6, 10]. In these GP methods,
each tree is often used to transform images into a set of infor-
mative features for classification [4, 5, 6, 10]. Typically, each
GP tree can be formulated as Φf,t(·) : Rm×l → Rd, which
consists of functions/operators (f), variables and constants
(t). d denotes the number of learned features. A performance
measure L is often used to evaluate the effectiveness of the
learned features and to guide the search of GP towards finding
the best tree (Φ∗(·)). Given Dtrain and L, the feature learning
task using GP can be formulated as Eq. (1).

Φ∗(·) = argmax
f∈F, t∈T

L(Φf,t(·),Dtrain). (1)

where Φ∗(·) denotes the best tree found by GP. F means
the function set and T means the terminal set. After the
evolutionary search process, the best tree Φ∗(·), which obtains
the best L on Dtrain, is tested on an unseen dataset Dtest to
show its generalisation performance.

Although GP has achieved promising results in different
image classification tasks, one important problem is how to
improve its computational efficiency. The desire of improving
GP’s efficiency is driven from the rapidly increasing number
of images/instances in image classification datasets. Many
well-known benchmark datasets have a very large number
of images for training or testing. For example, MNIST has
60,000 training images [11], and ImageNet has 1.2 million
training images [12]. Thanks to the graphics processing unit

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 2

(GPU) acceleration, many deep learning methods, particularly
deep CNNs, can be applied to such large datasets. However,
the current GP-based image classification methods are only
based on the central processing unit (CPU), whose has lower
computation speed than GPUs. Therefore, it is computationally
expensive or even impossible to apply GP to image classifica-
tion datasets with a large number of images based on CPUs.
On the other hand, GP is a population-based search technique
that needs a large number of expensive fitness evaluations.
These form the motivations of developing a new GP-based
approach to image classification with the goal of improving
computational efficiency.

Existing methods often cannot address well the problem of
improving computational efficiency of GP without sacrificing
the generalisation performance. These methods include using
a small number of instances for fitness evaluations [4], ap-
proximating the fitness values using surrogate models [13], or
using subtree caching [14]. Using a small number of instances
directly reduces the fitness evaluation cost, but it may lead to
poor generalisation performance on unseen data. Surrogates
have been used to fitness approximate in many evolutionary
algorithms for computationally expensive problems [15]. But
it may introduce uncertainty into the evaluation process. In
addition, the design of surrogate models in GP is not easy
because of the tree-based variable-length representation of the
solutions. Subtree caching is a method that stores the evaluated
GP trees and their fitness values in a hash table to avoid re-
evaluating the trees that have been stored in the hash table [14].
But this method cannot significantly reduce the computational
cost because many new trees may be generated and it requires
additional searching time. To this end, this paper attempts to
find better ways to improve the efficiency of GP for feature
learning in image classification without affecting performance.

Divide-and-conquer is known as a decomposition method
that decomposes a large problem into a set of smaller and
simpler subproblems to be addressed in an iterative manner,
and has been widely applied to large-scale optimisation prob-
lems [16]. Inspired by this method, this paper proposes a
new feature learning framework for image classification. It
splits the original training set into several non-overlapping
small subsets such that a small population can be used to
learn from each small subset. We term the new framework
as DCFL, indicating Divide-and-Conquer Feature Learning.
During evolution, each small population is evaluated on a
small subset of the training set, which intuitively reduces the
evaluation time. Since multiple populations are used in the
new framework and each population uses a different subset
for feature learning, a knowledge transfer method is developed
to improve the learning performance. In addition, without
loss of generalisation performance, a new fitness function and
an ensemble formulation strategy are proposed in DCFL to
achieve effective image classification. It is noted that the idea
of using multiple small populations to perform search and the
information exchange across these populations are similar to
island-based EC algorithms [17], so DCFL can be a special
case of them. Different from them, DCFL splits the training
set into several small subsets and build ensembles to solve the
learning problem with the goal of improving the efficiency.

The key characteristics of DCFL are summarised as follows:
1) DCFL splits the training set into several non-overlapping

subsets and the whole population into multiple small
populations. Each small population is used to learn
features from a subset of the training set. Besides,
another small population is used to learn features from
the whole training set. Theoretically and empirically,
this design reduces the overall computation time. DCFL
is suitable for different GP methods using various tree
representations for image classification.

2) DCFL shares the knowledge across these multiple popu-
lations to improve the learning performance of multiple
small populations and the overall performance.

3) DCFL employs a new log-loss-based fitness function to
obtain more accurate information on the effectiveness of
the learned features in guiding the GP search.

4) DCFL returns the best tree found by each small pop-
ulation and creates an effective ensemble for image
classification using a new ensemble formulation strategy.
The new strategy selects better trees and calculates
weights of the classifiers built from the selected trees
to achieve high generalisation performance.

DCFL can cooperate with the GP methods using different
tree representations to achieve fast feature learning for image
classification. In this paper, the tree representation of the GP
approach with image-related operators (i.e., FGP in short)
proposed in [6] is used together with DCFL for image classifi-
cation. Therefore, the new approach is also termed DCFL-FGP,
which denotes the use of the DCFL framework and the FGP
tree representation. Extensive experiments are conducted to
show the effectiveness of DCFL-FGP in image classification.

II. BACKGROUND AND RELATED WORK

A. GP for Image Feature Learning

In general, the overall process of the GP-based image
feature learning algorithm can be summarised as follows.

Step 1: Randomly initialise a population of trees. Each tree is
generated using a tree generation method based on the
program structure, the function set and the terminal set;

Step 2: Evaluate the fitness of each tree using a fitness function
and a set of training images with class labels;

Step 3: Use elitism to copy the best trees to the next genera-
tion. New trees are generated from the trees selected by
a selection method (i.e., tournament selection) using the
subtree crossover and subtree mutation operators; and

Step 4: Go to step 2 if the termination condition is not satisfied.
Otherwise, terminate the evolutionary learning process
and return the best tree.

The above process is similar to standard GP except for the
tree generation in steps 1 and 3 and the fitness evaluation in
step 2. The fitness evaluation varies with the algorithm design
and the target task. The tree generation is different because
most GP-based image feature learning algorithms have a
different representation compared with standard GP. Standard
GP constructs solutions by using arithmetic operators, e.g.,
+,−, and ×, as internal nodes and using features of the
dataset or random constants as leaf nodes. Most GP-based

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 3

image feature learning algorithms have a special representation
consisting of domain-specific functions as internal or root
nodes [5]. The representation often determines how the image
is transformed into features, e.g., through filtering and pooling
operations in [5, 18], which is the key to success.

1) GP-based Feature Learning Algorithms: The proposed
DCFL framework can cooperate with different GP-based algo-
rithms using various representations for image classification to
speed up their learning processes. In this paper, we use the rep-
resentation newly proposed in FGP [6] because it has achieved
promising results in many different image classification tasks.

The FGP method [6] is based on strongly typed GP (STGP)
[19] and has a multi-layer program structure and a function set
containing many image-related operators. The program struc-
ture has input, filtering, pooling, feature extraction, feature
concatenation, and output layers, are shown in Fig. 1. In these
layers, various image filters and descriptors are employed as
functions (internal nodes of GP trees), respectively. These de-
signs allow FGP to extract high-level features from raw images
through multiple simple or complex transformations. Since the
transformations are based on the operators from the image
domain, FGP can learn effective features for classification.
The results have shown its effectiveness on different tasks [6].

Input

Filtering

Output

Filtering/Pooling

Pooling

Concatenation

Input

Filtering

Feature Extraction

Filtering/Pooling

Pooling

Sobel_X

Image

MaxP

MaxP

Image

FeaCon2

LoG1

Example Program

Root3

LoG1

Med

LBP

MaxP

HOG

Lap

Image

Image

2 2

Flexible Layer

Fixed Layer

Output

2
2

4 4

Fig. 1. The program structure and an example program of FGP [6]. The
internal nodes in the example program are image-related operators.

Except for FGP, many GP methods with different rep-
resentations have been developed for image classification.
Shao et al. [5] developed a multi-objective GP algorithm
(MOGP) for feature learning in image classification. MOGP
has multiple layers, i.e., an input layer, a filtering layer, a
pooling layer, a concatenation layer, and an output layer,
to learn image features. MOGP achieved better results than
a variety of methods on different tasks. This method could
learn a large number of image features and require additional
dimensionality reduction. Bi et al. [18] proposed a GP method
to detect small regions from images and describe features
using Gaussian-based filters and pooling operators simultane-
ously. The method achieved better performance on six different
image classification datasets. Al-Sahaf et al. [4] developed a
GP method with a special root node to learn texture features
for classification. The learned GP tree can describe texture
features in a way that is similar to local binary patterns
(LBP), which is a well-known texture descriptor. This method
achieved better results than LBP and its variants on several
texture classification datasets. However, since this method can
only extract texture features, it may not be effective for other

types of image classification tasks. Bi et al. [20] developed
a GP method with a multi-layer representation to achieve
simultaneous feature learning and ensemble learning for image
classification. This method used a set of image-related opera-
tors and classification algorithms to build GP trees, achieving
better performance than many other effective algorithms on
different image classification tasks. However, with the use of
complex operators as GP functions, the computational cost of
this method is high.

GP-based feature learning, including feature extraction and
construction, has also been widely applied to other tasks.
Rodriguez-Coayahuitl et al. [21] investigated a structured
layered GP approach to representation learning. A GP-based
autoencoder, was developed to construct a representation of
the data using an encoding forest and a decoding forest. This
GP autoencoder achieved promising results on three image
datasets. Tran et al. [22] developed GP-based methods for
multiple feature construction in high-dimensional classifica-
tion. The GP methods with a multi-tree representation was
used to construct multiple features for classification based on
class-independent and class-dependent fitness functions. The
GP methods achieved better results in several real-world appli-
cations. La Cava et al. [23] developed a multidimensional GP
method to learn multiple features for multi-class classification.
A new program representation was developed to allow GP
to produce multiple features and a distance-based classifier
was designed for classification. This method achieved better
performance than other algorithms on several classification
problems. More related work can be found from [8, 24].

Several methods have been developed to improve the ef-
ficiency of GP. Nguyen et al. [13] proposed a surrogate-
assisted GP method for dynamic job shop scheduling. The
fitness values of GP trees were approximated using simple
simulation models that have a small number of jobs. This
method could reduce the computational cost of GP without
significant performance decrease. However, GP for feature
learning is different from GP for job shop scheduling and
does not use simulation models for fitness evaluations. In [14],
subtree caching was developed to improve the efficiency of GP.
The evaluated subtrees and trees, and their fitness values were
stored in a hash table. This method can avoid re-evaluating the
subtree that have been evaluated and stored in the hash table.
However, it requires time to perform a loop to check whether
the subtree is in this hash table so it cannot significantly reduce
the computational cost. Other methods such as surrogates for
fitness approximation, have also been used in EC algorithms
[15]. However, surrogates often introduce uncertainty into the
evaluation process and more investigation is needed to better
use them because GP has a variable-length representation,
which is different from other evolutionary algorithms.

In summary, most GP-based feature learning algorithms for
image classification focus on the GP representations with the
goal of improving the classification performance [4, 5, 6]. The
high computational cost of GP for image classification has
seldom been addressed. Since many image datasets tend to
be very large, e.g., MNIST [11] has 60,000 training images
and ImageNet [12] has 1.2 million training images of 1,000
classes, the computational cost of GP on such large datasets

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 4

could be very high. It is necessary to develop a new GP
approach applicable to these large datasets with less com-
putational cost. Existing work on improving the efficiency
of GP have limitations. Therefore, in this paper, inspired by
the ideas of divide-and-conquer [25] and island-based models
[17, 26], we develop a new GP approach to improving the
computational efficiency in image classification.

B. Knowledge Transfer

Knowledge transfer, or transfer learning, can extract use-
ful knowledge from a source domain or task and use the
knowledge to help improve the learning on a target domain
or task. It has been used to improve the learning performance
of EC algorithms. Gupta et al. [27] summarised three typical
paradigms of knowledge transfer in optimisation problems,
i.e., sequential transfer, multitask optimisation, and multiform
optimisation. Iqbal et al. [28] extracted the code fragments
of GP trees learned from a source task and reused them
in the initialisation and mutation steps of GP to improve
its learning performance in a target task. Jiang et al. [29]
developed a new transfer learning method to improve the
performance of multi-objective optimisation algorithms. The
idea considered that the non-dominated solutions at different
times have different distributions and there are relationships
between these probability distributions. This method can find
a latent space where a global feature of the source and target
domains is small and the transfer learning idea can improve
the algorithm performance. Gupta et al. [30] proposed an evo-
lutionary multitask optimisation approach, where a population
was used to solve multiple tasks and the genetic materials were
transferred implicitly through chromosomal crossover across
different tasks. Ding et al. [31] developed a new framework
for evolutionary multitask optimisation, where the knowledge
extracted from cheap optimisation problems were used to
improve the optimisation performance on computationally
expensive problems. In this study, the new divide-and-conquer
algorithm framework uses multiple populations to search for
the best trees from each small subset of the training set.
To improve the learning performance, a knowledge transfer
method is developed to achieve knowledge transfer between
these small population under the new algorithm framework.

C. Ensemble Methods for Classification

Ensemble methods typically use a set of classifiers to solve
a classification problem [32]. Well-known ensemble methods
are bagging or boosting methods, which train (base) classifiers
to build an ensemble in parallel or sequentially. After obtaining
a set of classifiers, a combination method, such as voting and
averaging, is used to combine the outputs of different base
learners to make the final prediction. Many EC algorithms,
including GP, have been developed to construct ensembles
for classification. Rosales-Pérez et al. [33] proposed an evolu-
tionary multi-objective algorithm to find multiple solutions to
instance selection and built an ensemble of SVM classifiers
using these solutions. Five ensemble formulation strategies
were investigated. The constructed ensembles achieved better
results than many other algorithms. Zhang et al. [34] developed

a new GP method to evolve a set of similarity functions that
were used to form an ensemble for text classification. This
method can find multiple similarity functions using a single
population, achieving better performance than the other fusion
methods such as GAs. Nag and Pal [35] developed a multi-
objective GP-based method to simultaneous feature selection
and diverse classifier designing for classification. This method
optimised three objectives, i.e., false positive, false negative,
and the number of leaf nodes in the GP tree. This method
built multiple binary classifiers with concise rules to construct
ensembles. This method achieved better performance on many
classification tasks in most comparisons. Rodrigues et al. [36]
proposed an ensemble GP method in which the population has
a different structure, fitness function, and genetic operators
to simultaneously evolve ensembles for classification. This
method achieved better results than standard GP and other
ensemble-based GP methods on eight binary classification
tasks. Bi et al. [37] developed a GP method to automatically
extract image features and evolve ensembles of random for-
est classifiers for image classification. This method achieved
better performance than traditional methods and deep random
forest on several image classification datasets.

In the proposed DCFL framework, multiple best GP trees
can be evolved and obtained after the evolutionary process.
These trees can be used to build an ensemble for classification
with high generalisation performance. This paper will develop
a new ensemble formulation strategy to combine these classi-
fiers built from the best trees to create an effective ensemble
for image classification.

III. THE PROPOSED APPROACH

This section introduces the proposed DCFL framework
in detail. Then the knowledge transfer method is described,
followed by the descriptions of the new fitness function and
the new ensemble method.

A. Algorithm Framework

The overall algorithm framework of DCFL is shown in Fig.
2. Based on the idea of divide-and-conquer, the whole training
set Dtrain is randomly split into N non-overlapping subsets
preserving the class ratio to form subsets D1, . . . , DN and
the whole population with a size of S is equally partitioned
into N + 1 small populations, i.e., P0, P1, . . . , PN . The
population size for each small population is [S/(N + 1)] (use
the integer part if S is indivisible by N + 1). It is noted that,
unlike other EC algorithms, e.g., GAs and particle swarm
optimisation (PSO), GP often uses a larger population size,
such as 500 in [6] or 1,000 in [13]. Therefore, it is applicable
to split the whole population into several small populations to
perform the search.

In DCFL, each small population uses a standard evolution-
ary process to search for the best tree/individual by updating
and evaluating the population at every generation. At the
initialisation step, DCFL randomly generates multiple small
populations of trees using a tree generation method based on
the predefined GP program structure, function set, and terminal
set. Then each population is evaluated on a specific training

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 5

Start

Initialise a small
GP population

Fitness
evaluation

Selection

Crossover

Mutation

Terminate?

End

Yes

No

Start

Initialise a small
GP population

Subset N

Fitness
evaluation

Selection

Crossover

Mutation

Terminate?

End

Yes

No

Start

Subset 1

End

The whole
training set

Randomly split into N non-overlapping
subsets preserving class ratio

Best tree Best treeBest tree

Ensemble
formulation

Knowledge transfer
crossing multiple

 populations

Initialise a small
GP population

Fig. 2. The overall algorithm framework of DCFL. The whole training set
is split into N non-overlapping subsets. This framework uses N + 1 small
populations to learn features from the whole training set and the N subsets,
respectively. Knowledge sharing is performed across these N+1 populations
during the evolutionary process. The best tree found by each small population
is used to form an effective ensemble for image classification.

set to obtain the fitness of the trees using a new log-loss-based
fitness function. DCFL uses crossover and mutation operators
to generate a new population at each generation. During this
process, DCFL extracts and transfers knowledge across these
multiple populations to improve the learning performance of
multiple small populations. After the evolutionary process,
i.e., when the maximal number of generations is reached,
the best tree found by each population is returned. Based
on these best trees, DCFL creates an effective ensemble
for image classification using a new ensemble formulation
strategy. The new strategy can automatically select the best
trees and calculate weights of the classifiers built from the
selected trees to achieve high generalisation performance.

During the evolutionary learning process, the P0 population
uses the whole training set to learn features, while the other N
populations use the N non-overlapping subsets to learn fea-
tures, respectively. In other words, P0 is evaluated on Dtrain
and Pi is evaluated on Di (with D1∪D2∪· · ·∪DN = Dtrain
and Di ∩ Dj = ∅, i, j ∈ [1, N], i 6= j) at each generation.

In contrast to evaluating the whole population on Dtrain,
DCFL evaluates multiple small populations on small subsets
of Dtrain, which directly reduces the computational cost.

Typically, using a small population has worse search ability
than using a large population. Since multiple populations are
used in DCFL and each population uses a different dataset
for learning, the knowledge across the different populations
can be exchanged to improve the learning performance. The
knowledge transfer method will be introduced in Section III-B.

Logistic regression (LR) can provide the prediction proba-
bilities of different classes, which is better for constructing an
ensemble. Therefore, LR is used in DCFL as a classification
algorithm and a new fitness function is developed to better
evaluate the performance of the trees. The new fitness function
is based on log-loss, which can provide accurate and diverse
information to evaluate the trees when the training set is small.
Section 6 will describe the new fitness function in details.

In DCFL, these small populations use limited information
from a small training set to search for the best trees. Image
data often have high variations. The best tree found using
limited information of the training set may have poor gen-
eralisation performance on unseen data. An ensemble consists
of multiple classifiers to solve a problem and can achieve
better generalisation performance than a single classifier [32].
Therefore, DCFL creates an effective ensemble from the best
trees returned by these multiple small populations in order to
obtain high generalisation performance on the unseen dataset.
The ensemble is built using a new ensemble formulation
strategy, which will be introduced in Section III-D.

1) Approximated Running/Computation Time Speed-Up
Analysis: We theoretically compare the approximated running
time of DCFL with a GP method having a standard algorithm
framework (i.e., SGP in short), i.e., evaluating the whole
population on the whole training set, to show its efficiency.
Typically, the main computation time of GP for image classi-
fication is spent on fitness evaluations, including transforming
images into features via GP trees and performing classification
using those features. Therefore, in this analysis, only the
image transformation time and the classification time are
counted and compared. Because GP evolves variable-length
solutions that transform the images into a set of features, exact
computation time is very difficult to calculate. For simplicity,
the computation time of using a GP tree to transform n images
is w1n, where w1 indicates the weight/multiplicative factor.
In addition, we assume that DCFL and SGP both use SVM
for classification. Typically, the computation time of SVM to
classify n instances, each of which has f features, is w2n

2f
(the computational complexity of SVM is O(n2f) [38, 39]),
where w2 indicates the weight/multiplicative factor.

Let S denotes the whole population size, n denotes the
number of instances in Dtrain, and G denotes the maximal
number of generations. At every generation, SGP evaluates
S individuals on Dtrain with n images. The approximated
computation time of SGP of a single run is

TSGP = GSw1n+GSw2n
2f, (2)

At every generation, DCFL evaluates S/(N + 1) trees on
Dtrain and S/(N + 1) trees on D1, . . . , DN , respectively. In

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 6

D1, . . . , DN , the number of instances is n/N (use the integer
part if n is indivisible by N). The approximated computation
time of DCFL of a single run is

TDCFL =
GS

N + 1
(w1n+ w2n

2f) +
GSN

N + 1
(
w1n

N
+ w2(

n

N
)2f)

= GS
2w1n

N + 1
+GS

w2n
2f

N
(3)

Based on Equations (2) and (3), we can have TDCFL <
TSGP on the condition that N > 1. A more detailed proof
can be found in the supplementary material.

Taking N = 4 as an example, the approximated computa-
tion time of DCFL is 2GSw1n/5 +GSw2n

2f/4. Comparing
with SGP (i.e., GSw1n + GSw2n

2f), DCFL is much faster.
Theoretically, DCFL is faster than SGP. In Section V, the
empirical running time speed-up comparisons will be provided
to further demonstrate the efficiency of DCFL.

B. Knowledge Transferring/Sharing in DCFL

The DCFL approach has N + 1 small populations,
which can learn different knowledge from various data
Dtrain,D1, . . . ,DN . Each dataset can be considered as a
single task with different instances. Knowledge transfer across
these populations can help improve learning performance. But
the key questions are what to transfer, how to transfer and
when to transfer [40]. In DCFL, we develop a simple method
to achieve fast knowledge transfer between the N + 1 small
populations at each generation, which is different from the
current work on knowledge transfer in GP.

Typically, the GP trees or subtrees contain/represent the
knowledge learned/discovered from the tasks [28]. The knowl-
edge can be extracted for reuse [28]. DCFL has multiple popu-
lations, which indicates that there are several possible sources
to extract trees and reuse them. To achieve fast and effective
knowledge transfer, the relationship between the datasets can
be used to provide intuitive hints towards how to extract and
use the knowledge across different populations. Based on the
relationship Di ⊂ Dtrain, D1 ∪ D2 ∪ · · · ∪ DN = Dtrain,
Di ∩ Dj = ∅ (i, j ∈ [1, N]; i 6= j), the knowledge transfer
route in DCFL is defined as Fig. 3.

Archive 1

Archive 2

P0

P1

P2

PN

Extract

Transfer

Extract

Transfer

Fig. 3. The knowledge transfer route in DCFL across the N + 1 multiple
populations at each generation. P0 uses the whole training set for learning
and the other populations use the N subsets of the training set for learning,
respectively.

In DCFL, two archives (i.e., Archive1 and Archive2) are
used to store the extracted trees (including subtrees) for trans-
ferring. Archive1 stores [S/(N+1)] best trees extracted from
P0 and Archive2 stores [S/(N+1)] best trees extracted from
P1, . . . , PN . Specifically, [S/N(N+1)] best trees are extracted
from each Pi(i ∈ [1, N]) to form Archive2. Note that we limit

the storage of Archive1 and Archive2 to [S/(N+1)] trees in
order to save memory. The trees in Archive1 and Archive2
are the best trees of P0, P1, . . . , PN of all the past generations.
Archive1 and Archive2 are updated at each generation after
fitness evaluation.

Archive
Select

one tree
Select

a subtree
Mutate
the tree

Obtain a
new tree

Current population Select one tree

Fig. 4. The process of knowledge transfer in the mutation operation on a GP
tree to generate a new tree.

The knowledge transfer is performed in the mutation op-
eration at each generation. As Archive1 and Archive2 can
store best trees, only the crossover and mutation operators are
used to generate new populations in DCFL. Standard mutation
operator randomly generates a new subtree to replace the
subtree from a randomly selected node of the tree, which can
add new genetic materials into the population. In DCFL, a
new mutation operator is proposed to use the subtrees from
the archive. The overall process of knowledge transfer in the
mutation process is shown in Fig. 4. The new operator starts
with selecting one tree from the archive using tournament se-
lection. Then a subtree is randomly selected from the selected
tree. The subtree of the tree to be mutated is replaced by
the selected subtree to generate a new tree. The new tree has
a subtree selected from the archive, which indicates that the
knowledge is successfully transferred. The mutation process
is somehow similar to the crossover process, but it focuses
on one selected parent each time and only returns one of the
offspring. This mutation operator can reduce the randomness
of the new population compared to the traditional mutation
operator by using transferred knowledge and allow the new
approach to have a good exploitation ability. On the other
hand, it might reduce the diversity of the population and result
in achieving a local optimal. Balancing the diversity and the
goodness of the population is typically difficult to achieve in an
EC algorithm. In DCFL, the mutation operator with knowledge
transfer shows promising results and its effectiveness will be
analysed and discussed in Section VI-B.

C. Fitness Evaluation

In many GP-based feature learning algorithms [5, 6], SVM
is often used for classifying images. SVM builds multiple
strong binary classifiers for a classification problem and cannot
directly provide probabilities of prediction. Compared with
SVM, LR, also known as softmax regression, can predict
confidence scores/probabilities of different classes for each
instance, which may be better for building an ensemble. DCFL
uses multinomial LR for image classification. In multinomial
LR, the probability of an instance x to belong to one of the
C−1 classes is P{y = c|x} and the probability of x to belong

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 7

to class C is P{y = C|x}, which are shown in Eq. (4) and
Eq. (5), respectively.

P{y = c|x} =
ewc

T ·x+βc

1 +
∑C−1
c=1 e

wc
T ·x+βc

, c = 1, 2, 3, · · · , C− 1,

(4)
P{y = C|x} =

1

1 +
∑C−1
c=1 e

wc
T ·x+βc

, (5)

where wc ∈ RS represents the weights (i.e., {wc,1, wc,2,
. . . , wc,S}) and βc represents the bias of the linear model:
wc

T · x + βc. wc
T represents the vector transpose. The

weights {w1,w2, . . . ,wC−1} and biases {β1, β2, . . . , βC−1}
can be estimated from training data using maximum likelihood
estimation.

The outputs of a LR classifier for an instance x are the
probabilities of different classes, such as P{y = 0|x} = 0.1
and P{y = 1|x} = 0.9. The commonly used log-loss (also
known as cross-entropy loss) function is more suitable for
evaluation than the accuracy metric. The accuracy metric only
considers the total number of correctly classified instances,
which, for example, considers whether P{y = 0|x} is larger
or smaller than P{y = 1|x}. However, the log-loss function
can provide more information by quantifying the penalty if
the predicted probability for the correct class is not one.
Specifically, a smaller loss indicates a better classification
performance. A zero log-loss indicates that all the instances
have predicted probabilities of one in the correct class and zero
in the other classes. In DCFL, the fitness function is based
on the negative log-loss function, which is to be maximised.
In the fitness evaluation, the stratified k-fold cross-validation
method is employed to obtain the value of log-loss. Therefore,
the fitness function for DCFL (to be maximised) is formulated
as Eq. (6).

Fit =
1

K

K∑
i=1

(Li)

=
1

K

K∑
i=1

(
1

Mi

Mi∑
m=1

C∑
c=1

ym,c log pm,c).

(6)

where Li represents the negative log-loss (i.e., log-loss is −Li)
on the ith fold. ym,c ∈ {0, 1} represents the true label of
instance m on class c. pm,c ∈ [0, 1] represents the predicted
probability of instance m on class c and

∑C
c=1 pm,c = 1. K

represents the number of folds in K-fold cross-validation and
Mi represents the total number of instances in fold i. The
values of Fit is in the range of (−∞, 0].

The fitness evaluation process in [6] uses a hash table to
store a number of evaluated trees to avoid evaluating the
same trees again. The fitness evaluation process of DCFL also
employs this strategy. Since there are N + 1 populations in
DCFL, N + 1 hash tables are built to store trees and their
fitness values in the past generations, respectively. Based on
the hash table and the new fitness function, the overall fitness
evaluation process is shown in Algorithm 1.

D. Ensemble Formulation for Image Classification
After the evolutionary process, DCFL returns the best tree

found by each population. Specifically, N + 1 best trees,

Algorithm 1: Fitness Evaluation
Input : CTn: the hash table of population n;

Dn = {(x1, y1), . . . , (xm, ym)}: the training data for
population n (D0 is Dtrain). p: the evaluated tree.

Output : f(p).
1 if p in CTn then
2 f(p)← the fitness value of CTn(p);
3 else
4 Use p to transform {x1, . . . , xm} into features {f1, . . . , fm};
5 Standardise {f1, . . . , fm} according to the mean and standard

deviation values;
6 Split {f1, . . . , fm} and {y1, . . . , ym} into K = 5 folds

preserving the class ratio;
7 for i = 1 to K do
8 Feed four folds of data except for the ith fold into logistic

regression to train a classifier;
9 Test the classifier on the ith fold of data;

10 Li ← Calculate the values of negative log-loss on the ith
fold according to Eq. (6);

11 end
12 f(p)← Calculate the average negative log-loss values;
13 end
14 Return f(p).

i.e., I0, . . . , IN , are obtained. To achieve good generalisation
performance on test data, a weighted ensemble is created based
on these trees and their weights for image classification. The
outline of ensemble formulation is showed in Fig. 5.

Best tree 0 Best tree 1 Best tree N

Select better trees and calculate
weights of these selected trees

Best tree 0 Best tree 1 Best tree m

Build a LR
classifier

Build a LR
classifier

Build a LR
classifier

An weighted ensemble

Best tree 2

w
0

w
1

w
m

w0 w1 w
m

Combine

Fig. 5. Outline of ensemble formulation. It selects m trees from the N +
1 trees to build m LR classifiers. A weighted ensemble with these m LR
classifiers is built for image classification.

In the ensemble formulation process, the performance of
trees is calculated and better trees are selected to construct an
effective ensemble of more accurate classifiers. The selection
is based on the performance of the trees on the whole training
set using the fitness function. The better trees are selected by
comparing their fitness values (f) with the fitness value (f0)
of the best tree of the first population P0. It is noted that
the fitness values have a large range (i.e., (−∞, 0]) and vary
with the datasets. We cannot set a fixed threshold for selection.
Therefore, f is compared with f0, and f0 is typically larger
than f . For simplicity purposes, the tree will be selected if its
fitness value is in the range [a ∗ f0, 0]. In this approach, we

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 8

set a as 2 to the selection and removal of trees. When a = 2,
the trees with fitness values in [2f0, 0] will be selected.

The main steps to select trees and calculate their weights
are summarised as follows:

Step 1: Evaluate each tree Ii (i ∈ [1, N]) on Dtrain using the
fitness function to obtain fitness values fi. Note that I0
has its fitness value f0 on Dtrain so that it is not evaluated
again;

Step 2: Select the trees if their fitness values are between
[2f0, 0]. Then m + 1 trees with their fitness values
{f0, . . . , fm} (m ∈ [0, N]) are obtained;

Step 3: Calculate the weights of each classifier. First, the
fitness values of m selected trees are transformed to
positive using (

∑m
i=0 fi)/fi to obtain {pi}mi=0 (note that

the rank of {fi}mi=0 does not change). Second, pi is scaled
into [0, 1] using pi/

∑m
i=0 pi to obtain {wi}mi=0, where∑m

i=0 wi = 1.

According to the m+ 1 selected trees and the weights, we
can build m+ 1 classifiers using the corresponding trees and
create an ensemble based on the classifiers and the weights.
Each classifier is built from a tree Ii (i ∈ [0,m]). In this
process, the tree Ii is used to transform images in Dtrain to
features, i.e., Ditrain. The features in Ditrain are standardised.
Then Ditrain is fed into LR to train the classifier i. Repeating
this process, the m + 1 classifiers trained using Dtrain are
obtained. The weight for classifier i is wi (i ∈ [0,m]).

In the test process, the m+1 trained classifiers are combined
to obtain an ensemble for classifying images in the test set
Dtest using weighted voting [32]. In the test process, the
test set Dtest is transformed into features Ditest using the
corresponding tree Ii. The Ditest is standardised according
to Ditrain. Then an instance x in Ditest can be fed into a
classifier i to obtain the predicted probabilities for x, i.e.,
{P i(y = 0|x), . . . , P i(y = C|x)}. Repeating this process,
m+1 sets of predicted probabilities for instance x are obtained
from the m+ 1 classifiers.

According to the weights {wi}mi=0 and the probabilities
from m classifier, the weighted probabilities for instance x
are calculated using Eq. (7).

P (y = c|x) =

m∑
i=0

wi × P i(y = c|x), c = 0, . . . , C, (7)

Based on the weighted probabilities, we can obtain the class
label c∗ for instance x returned by Eq. (8).

c∗ = argmax
P (y=c|x)

{P (y = 0|x), . . . , P (y = C|x)}. (8)

Finally, the class label for each instance in Dtest and the
overall classification accuracy on the test set can be calculated.

IV. EXPERIMENT DESIGN

A number of experiments have been conducted to show the
effectiveness of the proposed approach. This section presents
the experiment design, including benchmark datasets, bench-
mark methods, and parameter settings.

A. Benchmark Datasets

In the experiments, 12 image classification datasets of
varying difficulty are employed as benchmark datasets to
examine the performance of DCFL. These datasets are FEI 1
[41], FEI 2 [41], KTH [42], FS [43], Amazon [44], MB [45],
MRD [45], MBR [45], MBI [45], Rectangle [45], RI [45], and
Convex [45]. These datasets represent various representative
image classification tasks, i.e., facial expression classification
(FEI 1 and FEI 2), texture classification (KTH), scene classi-
fication (FS), digit recognition (MB, MRD, MBR, and MBI),
and object classification (Amazon, Rectangle, RI and Convex).
In addition, these datasets include a wide range of image vari-
ations, i.e., rotation (Amazon, MRD), scale (Amazon, KTH),
illumination (KTH and FS), noise or background changes
(MBR, MBI, FS, and RI). Therefore, these datasets are very
suitable for evaluating the performance of DCFL without
losing generality. The detailed information about these datasets
are listed in Table I. The FEI 1, FEI 2, KTH, FS, and Amazon
datasets are randomly split to have 50, 50, 48, 100, and 30
images per class to form the training sets and the remaining
images to form the test sets, respectively [6]. Example images
from these datasets are shown in Fig. 6. Note that we have
also tested the performance of DCFL-FGP on two additional
large datasets, i.e., MNIST [11] and Fashion MNIST [46].
The classification performance and the comparisons between
DCFL-FGP and the other reference methods [2, 3] on such
datasets are discussed in the supplementary materials.

TABLE I
SUMMARY OF BENCHMARK DATASETS

No. Dataset Image Size Training Set
Size

Test Set
Size

#Class

1 FEI 1 60×40 150 50 2
2 FEI 2 60×40 150 50 2
3 KTH 50×50 480 330 10
4 FS 55×55 1,300 2,559 13
5 Amazon 50×50 930 1,887 31
6 MB 28×28 12,000 50,000 10
7 MRD 28×28 12,000 50,000 10
8 MBR 28×28 12,000 50,000 10
9 MBI 28×28 12,000 50,000 10
10 Rectangle 28×28 1,200 50,000 2
11 RI 28×28 12,000 50,000 2
12 Convex 28×28 8,000 50,000 2

B. Benchmark Methods

A large number of benchmark methods are employed
to show the effectiveness of the proposed approach. The
benchmark methods on datasets 1-5 are 14 methods, i.e.,
six classification algorithms using raw pixels, four SVMs
using different preextracted features, two CNNs with different
architectures, and two GP-based methods. These methods
are SVM, KNN, LR, adaptive boosting (AdaBoost), random
forest (RF), extremely randomised trees (ERF), SVM using
uniform LBP features (uLBP+SVM), SVM using LBP fea-
tures (LBP+SVM), SVM using histogram of oriented gradi-
ent (HOG) features (HOG+SVM), SVM using scale-invariant
feature transform (SIFT) features (SIFT+SVM), CNN with
five layers (CNN-5), CNN with eight layers (CNN-8), EGP

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 9

 FEI_1 FEI_2 KTH

 FS Amazon

 0 4 1 6 5 9 7 8 6

 Rectangle RI Convex

 MB MRD MBR MBI

Fig. 6. Example images from the 12 benchmark image classification datasets,
respectively. The corresponding class labels of digit images are under the
example images.

[47], and FGP [6]. These methods are representative meth-
ods for image classification. On datasets 6-12, there are 21
benchmark methods for comparisons. They are SVM+RBF
[45], SVM+Poly [45], SAE-3 [48], DAE-b-3 [48], CAE-2
[48], SPAE [49], RBM-3 [48], ScatNet-2 [50, 51], RandNet-2
[51], PCANet-2 (softmax) [51], LDANet-2 [51], NNet [45],
SAA-3 [45], DBN-3 [45], FCCNN [52], FCCNN (with BT)
[52], SPCN [53], EvoCNN [7], EGP [47], IEGP [20], and
FGP [6]. These methods include auto-encoders (SAE-3, DAE-
b-2, CAE-2, and SPAE), and CNNs (CNN-5, CNN-8, FC-
CNN, FCCNN(with BT), SPCN, and EvoCNN). The EvoCNN
method is a state-of-the-art deep learning method that uses an
evolutionary algorithm to automatically find the architectures
of CNNs for image classification. It searches for the best
CNN architecture rather than using a predefined architecture
to achieve impressive classification performance. It is noted
that EvoCNN has achieved better results than several well-
known CNNs, including VGG16, GoogleNet, AlexNet, and
SqueezeNet [7]. These methods also include state-of-the-art
GP-based methods, i.e., EGP (an ensemble method), IEGP
(an ensemble methods) and FGP.

Note that the benchmark methods on datasets 1-5 are
different from those on datasets 6-12. Datasets 6-12 have
publicly available training and test sets so that there are many
reported classification results in the literature. The classifica-
tion results of the 21 benchmark methods are collected from
the corresponding papers. These results are state-of-the-art on
the corresponding dataset. On datasets 1-5, all the benchmark
methods run on the training set and the classification results
are obtained on the test set, following the same settings in [6].

C. Parameter Settings

The DCFL framework is used with the FGP tree representa-
tion [6] for image classification. The new approach is termed
DCFL-FGP in the following sections. The program structure,
the function set and the terminal set of FGP can be found
in [6]. The parameter settings for DCFL-FGP are based on

commonly used settings for GP [6, 28]. In FGP, the population
size is 500 and the maximal number of generation is 50 [6]. To
achieve fair comparisons, the total population size in DCFL-
FGP is 500. Based on preliminary experiments, N is set to
4 as this value induces a good balance between efficiency
and effectiveness. With N = 4, DCFL-FGP has five small
populations with a size of 100, respectively. The crossover
rate is 0.8 and the mutation rate is 0.2. The best trees can be
stored in the archives (i.e., Archive1 and Archive2) so that
DCFL-FGP does not need elitism. The selection method is
tournament selection with size 7. The tree generation method
is ramped half-and-half. The tree depth at the initialisation
step is 2-6 and the maximal tree depth is 8. Note that DCFL-
FGP may evolve trees with depth above 8 because the type
constraints are more important than the depth constraint in
STGP. In the LR classification algorithm employed for fitness
evaluation, stochastic average gradient (SAG) is used for
optimising weights and bias as it is fast on large dataset
[54]. The number of iterations in LR is set to 50 during the
evolutionary learning process to save computational cost and
set to 100 in the test process. The other parameters for LR are
based on the default settings of the algorithm implemented in
scikit-learn [38].

The parameter settings for the benchmark methods, i.e.,
SVM, KNN, LR, RF, AdaBoost, and ERF, refer to [4, 55, 56],
where the number of nearest neighbours is 1 in KNN, the
number of trees is 500 and the maximal tree depth is 100
in RF and ERF. These algorithms are implemented based
on the machine learning package scikit-learn [38]. The other
parameters are the default ones in this package. The CNN-
5 and CNN-8 methods [6] are implemented in Keras [57].
ReLU is used as the activation function and softmax is used
for classification in the final layer. Dropout is added after
the pooling and the first fully connected layer with 0.25 and
0.5 probabilities, respectively, to avoid overfitting [58]. Note
that CNN-5 and CNN-8 are just examples of CNNs to show
whether the proposed method can achieve better results than
simple CNNs on datasets 1-5. The performance of CNNs on
datasets 1-5 might be further improved by using deep CNNs
with transfer learning or manual tuning of architectures, which
are out of the scope of this study.

The DCFL-FGP approach is implemented using the DEAP
(Distributed Evolutionary Algorithm in Python) [59] package.
To further speed up DCFL-FGP, the SCOOP package [60]
is employed to use multiple cores for fitness evaluations,
i.e., each tree is evaluated on one core and multiple trees
are evaluated at the same time using multiple cores. In the
experiments, four cores are used to run DCFL-FGP. On
each dataset, 30 independent runs of DCFL-FGP have been
executed, according to the convention of the EC communities.
The benchmark methods on datasets 1-5 also run 30 times for
comparisons. The best and average results of the 30 runs are
reported. Note that all the reported results are on the test sets,
which are unseen to the training and evolutionary processes.

V. RESULTS AND DISCUSSIONS

This section presents the experimental results obtained
by the proposed DCFL-FGP approach and the benchmark

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 10

TABLE II
CLASSIFICATION ACCURACY (%) OF DCFL-FGP AND FGP ON THE 12

DATASETS. “+”/“–” INDICATES THAT DCFL-FGP ACHIEVES
SIGNIFICANTLY BETTER/WORSE RESULTS THAN FGP. “=” INDICATES

THAT DCFL-FGP ACHIEVES SIMILAR RESULTS TO FGP

FGP [6] DCFL-FGP
Dataset Max Mean±St.dev Max Mean±St.dev
FEI 1 98.00 94.47±2.67= 98.00 94.80±2.61
FEI 2 96.00 91.33±3.36= 98.00 91.40±3.02
KTH 98.79 96.07±1.13+ 99.09 97.84±0.78
FS 74.48 71.59±1.74+ 80.23 78.52±1.09
Amazon 61.31 57.80±1.35+ 63.01 61.07±0.93
MB 98.82 98.70±0.06+ 98.95 98.85±0.05
MRD 92.63 91.56±0.61+ 92.58 91.99±0.40
MBR 93.46 92.66±0.43= 93.73 92.79±0.41
MBI 92.52 89.65±1.44= 93.16 89.49±0.92
Rectangle 100.0 99.88±0.11+ 100.0 99.99±0.02
RI 93.90 92.66±0.62= 95.11 93.05±1.03
Convex 98.46 98.16±0.19= 98.54 98.22±0.14
Total 6+, 6=

methods on the 12 datasets. This section compares the DCFL-
FGP approach with the benchmarks methods in classification
accuracy and training time on these benchmark datasets.

A. Classification Performance

1) Comparison with FGP: The classification results, i.e.,
maximal accuracy (Max), mean accuracy and standard devi-
ation (Mean±St.dev), of DCFL-FGP and FGP are listed in
Table II. The Wilcoxon rank-sum test with a 95% significance
interval is used to compare DCFL-FGP with FGP. In Table II,
the “+” and “=” symbols indicate that DCFL-FGP achieves
significantly better, worse and similar results than/to FGP. It
is noted that FGP and DCFL-FGP use the same individual
representation for feature learning. Unlike FGP, DCFL-FGP
uses the proposed DCFL framework.

Table II shows that DCFL-FGP achieves significantly better
results than FGP on six datasets and similar results on the
remaining six datasets. DCFL-FGP obtains higher maximal
accuracy than FGP on 11 datasets except for MRD. It achieves
better mean accuracy than FGP on 11 datasets except for
MBI. More importantly, DCFL-FGP improves the mean ac-
curacy by 6.93% on FS, for which the challenging task is
understanding natural scene images. The classification results
show that DCFL-FGP is more effective than FGP on the
12 different image classification tasks. Compared with FGP,
DCFL-FGP uses the same tree representation, function set,
terminal set, and parameter settings. The results show that
the new DCFL framework, i.e., including the knowledge
transfer, the fitness function, and the ensemble formulation,
is effective for improving the performance of FGP in image
classification. With these new designs, DCFL-FGP can find
the best trees from multiple small populations and construct
an effective ensemble of diverse and effective classifiers using
these trees to achieve higher generalisation performance on
different image classification datasets.

2) Comparison with Benchmark Methods on Datasets 1-5:
The classification results of DCFL-FGP and 13 benchmark
methods on datasets 1-5 are listed in Table III. The results
show that DCFL-FGP obtains significantly better results than

most benchmark methods on these five image classification
datasets of varying difficulty. Specifically, DCFL-FGP is
significantly better than eight methods and similar to four
methods out of the 13 benchmark methods on FEI 1. On
FEI 2, DCFL-FGP is significantly better than nine methods
and similar to two methods. On KTH, FS, and Amazon,
DCFL-FGP performs significantly better than any of the
benchmark methods. FEI 1 and FEI 2 are facial expression
classification tasks, which are relatively easy so that many
benchmark methods achieve high accuracy, e.g., over 90%.
KTH and FS are texture classification and scene classification
tasks. The benchmark methods achieve very low accuracy on
these two datasets, i.e., the mean accuracy is less than 83%
on KTH and less than 62% on FS, while DCFL-FGP achieves
97.84% mean accuracy on KTH and 78.52% mean accuracy
on FS. Amazon represents a difficult object classification task
so that most benchmark methods achieve very low accuracy.
On Amazon, DCFL-FGP achieves significantly better accuracy
than any of the benchmark methods. The results show that
DCFL-FGP is effective for solving different types of image
classification tasks.

3) Comparison with Benchmark Methods on Datasets 6-12:
The classification accuracy of DCFL-FGP and 21 benchmark
methods on datasets 6-12 are listed in Table IV. The datasets
6-12 have public training and test sets so that the accuracy
of these benchmark methods on the test set is collected from
the corresponding papers. On these datasets, we only compare
the best results of these methods because most benchmark
methods only report the best results.

In Table IV, we can observe that DCFL-FGP achieves
better results than most benchmark methods on the seven
datasets. Since these benchmark methods have achieved high
accuracy on these datasets, any further improvement in ac-
curacy is difficult. In addition, most benchmark methods are
(deep) neural network-based methods, which are known as
powerful methods for image classification. Compared with
these benchmark methods, DCFL-FGP, as a pure GP method,
ranks first among all the methods on four datasets, i.e., MB,
Rectangle, RI, and Convex, ranks second on the two datasets,
i.e., MBR and MBI, and ranks fourth on the remaining
one dataset, i.e., MRD. On MB, DCFL-FGP and LDANet-
2 find the best accuracy of 98.95%. However, LDANet-2
only achieves 87.58% on MBI, which is a variant of MB by
adding additional image background, and 83.80% on RI, which
is a variant of Rectangle by adding additional background
noise. This indicates that the performance of LDANet-2 is
significantly affected by these additional noises in the MBI
and RI datasets. Compared with LDANet-2, DCFL-FGP is
less affected by achieving 93.16% accuracy on MBI and
95.11% accuracy on RI. The EvoCNN method, which is a
state-of-the-art deep learning method that uses an evolutionary
algorithm to search for the best CNN architecture for image
classification achieves the best results on the MRD, MBR
and MBI datasets. These three datasets are difficult due to
additional variations. EvoCNN requires graphics processing
unit (GPU) implementation and uses extensive computational
resources to find the best architecture for CNN so that it
can achieve better classification accuracy. In contrast, DCFL-

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 11

TABLE III
CLASSIFICATION ACCURACY (%) OF DCFL-FGP AND 13 BENCHMARK METHODS ON DATASETS 1-5 . “+”/“–” INDICATES THAT DCFL-FGP ACHIEVES

SIGNIFICANTLY BETTER/WORSE RESULTS THAN THE COMPARED METHOD. “=” INDICATES THAT DCFL-FGP ACHIEVES SIMILAR RESULTS TO THE
COMPARED METHOD

FEI 1 FEI 2 KTH FS Amazon
Method Max Mean±St.dev Max Mean±St.dev Max Mean±St.dev Max Mean±St.dev Max Mean±St.dev
SVM 90.00 90.00±0.00+ 88.00 88.00±0.00+ 46.97 44.59±2.83+ 20.63 20.30±0.15+ 32.17 31.37±0.31+
KNN 32.00 32.00±0.00+ 8.00 8.00±0.00+ 34.24 34.24±0.00+ 24.35 24.35±0.00+ 29.57 29.57±0.00+
LR 92.00 92.00±0.00+ 88.00 88.00±0.00+ 48.79 48.79±0.00+ 23.49 23.49±0.00+ 35.19 35.19±0.00+
RF 98.00 97.07±1.01– 90.00 89.20±1.13+ 60.00 57.81±0.83+ 37.36 36.53±0.49+ 46.90 46.16±0.41+
AdaBoost 80.00 78.67±1.32+ 80.00 76.00±3.44+ 37.88 33.44±1.37+ 17.47 13.04±1.47+ 7.47 7.42±0.01+
ERF 94.00 93.27±0.98+ 92.00 90.60±0.93= 61.52 59.83±0.86+ 37.94 37.15±0.36+ 48.49 47.55±0.38+
uLBP+SVM 66.00 56.73±3.66+ 68.00 62.53±3.52+ 78.79 73.29±4.18+ 49.79 33.27±8.90+ 35.14 35.14±0.00+
LBP+SVM 68.00 64.60±1.83+ 74.00 69.80±0.00+ 83.64 82.71±0.51+ 53.50 50.45±1.80+ 39.90 39.90±0.00+
HOG+SVM 96.00 96.00±0.00= 82.00 82.00±0.00+ 57.27 55.96±0.64+ 12.11 7.91±2.47+ 26.87 26.87±0.00+
SIFT+SVM 56.00 56.00±0.00+ 62.00 62.00±0.00+ 65.76 65.76±0.00+ 60.92 60.92±0.00+ 51.46 51.46±0.00+
CNN-5 98.00 95.40±1.30= 98.00 95.27±1.62– 85.76 82.56±1.87+ 50.14 48.03±1.16+ 43.19 40.06±1.26+
CNN-8 98.00 95.33±1.32= 96.00 90.93±1.87= 76.36 71.63±3.18+ 49.16 46.79±1.01+ 46.26 43.94±1.26+
EGP [47] 100.0 96.20±2.06= 100.0 98.07±1.70– 87.88 77.53±5.17+ 67.17 61.07±2.91+ 63.75 56.77±2.87+
DCFL-FGP 98.00 94.80±2.61 98.00 91.40±3.02 99.09 97.84±0.78 80.23 78.52±1.09 63.01 61.07±0.93
Overall 8+, 4=, 1– 9+, 2=, 2– 13+ 13+ 13+

TABLE IV
CLASSIFICATION ACCURACY (%) OF DCFL-FGP AND 21 BENCHMARK METHODS ON DATASETS 6-12. “↑” INDICATES THAT DCFL-FGP ACHIEVES

BETTER ACCURACY THAN THE COMPARED METHOD

Method MB MRD MBR MBI Rectangle RI Convex
SVM+RBF [45] 96.97 (↑) 88.89 (↑) 85.42 (↑) 77.39 (↑) 97.85 (↑) 75.96 (↑) 80.87 (↑)
SVM+Poly [45] 96.31 (↑) 84.58 (↑) 83.38 (↑) 75.99 (↑) 97.85 (↑) 75.95 (↑) 80.18 (↑)
SAE-3 [48] 96.54 (↑) 89.70 (↑) 88.72 (↑) 77.00 (↑) 97.86 (↑) 75.95 (↑) –
DAE-b-3 [48] 97.16 (↑) 90.47 (↑) 89.70 (↑) 83.32 (↑) 98.01 (↑) 78.41 (↑) –
CAE-2 [48] 97.52 (↑) 90.34 (↑) 89.10 (↑) 84.50 (↑) 98.79 (↑) 78.46 (↑) –
SPAE [49] 96.68 (↑) 89.74 (↑) 90.99 (↑) 86.76 (↑) – – –
RBM-3 [48] 96.89 (↑) 89.70 (↑) 93.27 (↑) 83.69 (↑) 97.40 (↑) 77.50 (↑) –
ScatNet-2 [50, 51] 98.73 (↑) 92.52 (↑) 87.70 (↑) 81.60 (↑) 99.99 (↑) 91.98 (↑) 93.50 (↑)
RandNet-2 [51] 98.75 (↑) 91.53 (↑) 86.53 (↑) 88.35 (↑) 99.91 (↑) 83.00 (↑) 94.55 (↑)
PCANet-2 (softmax) [51] 98.60 (↑) 91.48 (↑) 93.15 (↑) 88.45 (↑) 99.51 (↑) 86.61 (↑) 95.81 (↑)
LDANet-2 [51] 98.95 92.48 (↑) 93.19 (↑) 87.58 (↑) 99.86 (↑) 83.80 (↑) 92.78 (↑)
NNet [45] 95.31 (↑) 81.89 (↑) 79.96 (↑) 72.59 (↑) 92.84 (↑) 66.80 (↑) 67.75 (↑)
SAA-3 [45] 96.54 (↑) 89.70 (↑) 88.72 (↑) 77.00 (↑) 97.59 (↑) 75.95 (↑) 81.59 (↑)
DBN-3 [45] 96.89 (↑) 89.70 (↑) 93.27 (↑) 83.69 (↑) 97.40 (↑) 77.50 (↑) 81.37 (↑)
FCCNN [52] 97.57 (↑) 91.09 (↑) 93.55 (↑) 86.77 (↑) – – –
FCCNN (with BT) [52] 97.32 (↑) 90.41 (↑) 93.03 (↑) 89.20 (↑) – – –
SPCN [53] 98.18 (↑) 90.19 (↑) 94.16 90.45 (↑) 99.81 (↑) 89.40 (↑) –
EvoCNN (best) [7] 98.82 (↑) 94.78 97.20 96.47 99.99 (↑) 94.97 (↑) 95.18 (↑)
EGP (best) [47] 97.19 (↑) – – – 99.91 (↑) – 93.97 (↑)
IEGP (best) [20] 98.82 (↑) 94.28 93.59 (↑) 89.41 (↑) 100 94.88 (↑) 98.26 (↑)
FGP (best) [6] 98.82 (↑) 92.63 93.46 (↑) 92.52 (↑) 100 93.90 (↑) 98.46 (↑)
DCFL-FGP (best) 98.95 92.58 93.73 93.16 100 95.11 98.54
Rank 1/22 4/21 2/21 2/21 1/19 1/18 1/14

FGP is implemented on central processing unit (CPU) and
the computational cost is affordable (or even less). Although
DCFL-FGP achieves slightly worse results on these three
datasets, it is noted that it achieves better results than EvoCNN
on the remaining four datasets. Compared with EGP, IEGP and
FGP, which are state-of-the-art GP-based algorithms, DCFL-
FGP achieves better results on six datasets except for MRD,
on which IEGP achieves slightly better accuracy. IEGP is an
ensemble method that automatically learns features and builds
many different classifiers (e.g., SVM, RF and LR) to construct
ensembles. DCFL-FGP only uses the LR classifier to construct
ensembles but achieves similar or even better performance
than IEGP. The results on these seven datasets demonstrate
that DCFL-FGP is more effective than existing methods by
achieving better results in almost all the comparisons.

B. Training Time

The DCFL-FGP approach is sped up by the SCOOP [60]
package to use four CPU cores for fitness evaluations. To
achieve fair comparisons, we also run FGP using four cores
and the SCOOP package. Due to the high computational cost
of FGP, we only run it on the FEI 1, FEI 2, KTH, FS,
Amazon, and Rectangle datasets. The training time of DCFL-
FGP and FGP on the six datasets are shown in Fig. 7. The
computation time of DCFL-FGP on all the 12 benchmark
datasets are shown in Fig. 8.

Figure 7 shows that DCFL-FGP uses significantly shorter
training time than FGP on these six datasets. Specifically,
DCFL-FGP is nearly twice faster than FGP on the FEI 1 and
Amazon datasets, nearly three times faster on the FEI 2 and
Rectangle datasets, three times faster on the KTH dataset, and

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 12

Fig. 7. Training/computation time (hours) of DCFL-FGP and FGP on the
FEI 1, FEI 2, KTH, FS, Amazon and Rectangle datasets.

Fig. 8. Training/computation time (hours) of DCFL-FGP on the 12 benchmark
datasets.

five times faster on the FS dataset. This indicates that DCFL-
FGP significantly improved the computational efficiency of
FGP. Compared with FGP, DCFL-FGP has a new algorithm
framework that splits the training set and the whole population
into small subsets and small populations. By evaluating small
populations on small subsets, DCFL-FGP uses significantly
shorter training time than FGP on these datasets. These com-
parisons show that the objective of improving the efficiency
of GP for image classification has been successfully achieved.

To further analyse the computational cost of DCFL-FGP, we
compare the running time of DCFL-FGP with a state-of-the-
art deep learning method and many other benchmark methods,
including EvoCNN, DAE-b-3, SAE-3, DBN-3, PCANet, and
FCCNN. Figure 8 shows that DCFL-FGP uses about 38 to
50 hours on the MB, MRD, MBR, and MBI datasets, 33.6
hours on the RI dataset, and 8.2 hours on the Convex dataset.
The state-of-the-art method, EvoCNN, needs 2 to 3 days to
run the experiments using two identical GTX1080 GPU cards
on these benchmarks [7]. The training time of DCFL-FGP
is shorter than or similar to that of EvoCNN if we do not
consider other factors. However, the computational speed of
GPUs is typically faster than that of CPUs for CNNs and
image operations [61, 62] (i.e., CNNs for image classification
is high inherent parallelism) and the comparisons are not
entirely fair. The training time of some benchmark methods,
i.e., DAE-b-3, SAE-3, DBN-3, PCANet, and FCCNN, can be
found from the literature [51, 52]. DAE-b-3, SAE-3 and DBN-
3 use more than three hours on the MB dataset. PCANet uses
less than one hour on MB. FCCNN uses 5 to 30 minutes on
MB. Compared with these methods, DCFL-FGP uses longer
training time on MB. However, such simple comparisons are
not entirely fair due to lack of detailed information of the
experiment running environment. DCFL-FGP is an EC-based
method, which is typically more time-consuming than non-

EC-based methods due to a large number of fitness evaluations
during the evolutionary process. It is noted that the training of
DCFL-FGP can be offline and its test process is fast.

C. Summary

To sum up, the results show that DCFL-FGP is an effective
and promising approach to feature learning for image clas-
sification. Compared with the original FGP method, DCFL-
FGP not only improves classification performance but also
significantly reduces computation time. Compared with a large
number of existing image classification algorithms, DCFL-
FGP achieves better results in most comparisons, which further
indicates the effectiveness of DCFL-FGP. The extensive exper-
imental results on different datasets demonstrate that DCFL-
FGP can effectively solve different types of image classifi-
cation tasks. The results indicate that DCFL-FGP achieves
high generalisation performance by constructing an effective
ensemble of diverse and accurate classifiers using the best trees
found by small populations from different subsets of training
data. The comparisons of DCFL-FGP with FGP and EvoCNN
in training time show that the efficiency of DCFL-FGP is
improved by using small populations to learn features from
small subsets of the training data.

VI. FURTHER ANALYSIS

This section further analyses the ensembles constructed
from the trees of DCFL-FGP to show why it can achieve
good classification performance. Further empirical analysis is
conducted to analyse whether and why the knowledge transfer
is effective in DCFL-FGP.

A. Analysis on the Constructed Ensembles

DCFL-FGP outputs a set of best trees found by multiple
small populations and creates an ensemble based on these
trees for image classification. Note that N is set to 4 in
DCFL-FGP so that there are five small populations that return
five trees. In each constructed ensemble, there are at most
five classifiers. Each classifier is obtained using one GP tree.
Therefore, the performance of the five classifiers on the test
set and the weights of the five classifiers in the constructed
ensemble are analysed to show why DCFL-FGP can achieve
high generalisation performance.

Fig. 9 shows the distributions of the classification accuracy
(%) obtained by every single classifier and the constructed
ensemble on the test set of MB. Note that the results have
been obtained in 30 independent runs. From Fig. 9, it can
be observed that the classification performance of all the five
classifiers is between 98.1% to 98.8%. Among all the five
classifiers, the best one is the first one, which is obtained
using the best tree found from the whole training set. The other
four classifiers are obtained using the best trees found from the
small subsets of the training set. This shows that using a small
number of training instances could reduce the generalisation
performance of the trees. However, the differences in the ac-
curacy between all the classifiers are not very big. One reason
may be that the knowledge transfer between the multiple small
populations improves generalisation performance.

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 13

Fig. 9. The distributions of classification accuracy (%) obtained by every
single classifier and the constructed ensemble on the MB dataset. Every
single classifier is obtained using the best tree found by a small population in
DCFL-FGP. The ensemble is built from the five classifiers using the ensemble
formulation strategy.

Fig. 10. The distributions of weights of the five classifiers in the constructed
ensemble on the MB dataset. The five classifier are obtained using the five
best trees found by DCFL-FGP.

Comparing the results of the five classifiers with the en-
semble in Fig. 9, it is clear that the constructed ensemble
achieves better generalisation performance than any of the
five classifiers. More importantly, the lowest accuracy of the
ensembles in the 30 runs is better than the highest accuracy of
the five classifiers on the MB dataset. In general, to obtain a
good ensemble, the classifiers should be diverse and accurate
[56]. Since each classifier is trained using trees from the
different small populations, it is clear that the diversity of the
classifiers in the ensemble is high. Since the accuracy of every
single classifier is also high, the generalisation performance
of the constructed ensemble is better than any of the single
classifiers. It is noted that the accuracy of the constructed
ensemble is better than any of the benchmark methods on
MB although the best accuracy of the five classifiers is worse
than some benchmark methods, such as FGP and RandNet-2.

Fig. 10 shows the distributions of weights of the five
classifiers in the ensembles on the MB dataset. The weights
are calculated according to the performance of the trees found
by the small populations on the whole training set, which has
been described in Section III-D. From Fig. 10, it is obvious
that the weight of the first classifier is higher than those of
the other four classifiers. From Fig. 9 and Fig. 10, we can
find that the classifier that has a larger weight in the ensemble
also obtains a higher accuracy on the test set of MB. This
shows that the ensemble formulation strategy can combine
the classifiers well to obtain an effective ensemble with high

generalisation performance.

B. Effectiveness of Knowledge Transfer

To analyse the effectiveness of knowledge transfer in DCFL-
FGP, the baseline method without knowledge transfer is used
for comparisons. Six different datasets of various numbers of
instances are used to conduct the experiments. The parameter
settings for DCFL-FGP with and without knowledge transfer
(KT) are the same. The classification results of these two
methods are listed in Table V. It can be observed that
DCFL-FGP with KT achieves significantly better or similar
performance than/to that without KT on the six different
datasets. On five of the six datasets, DCFL-FGP with KT
achieves better maximal accuracy than DCFL-FGP without
KT. On the remaining dataset (FEI 1), DCFL-FGP with KT
achieves the same maximal accuracy to that without KT. On
the FEI 1, FEI 2 and Convex datasets, DCFL-FGP with KT
achieves better mean accuracy than DCFL-FGP without KT.
On the KTH, FS and MB datasets, DCFL-FGP without KT
achieves better mean accuracy than DCFL-FGP with KT, but
the results of the 30 runs are not significantly different. From
Table V, it is noted that DCFL-FGP without KT can achieve
comparable performance on some datasets. Without KT, the
trees found by DCFL-FGP are more diverse but less accurate,
which might lead to creating an effective ensemble of diverse
classifiers to achieve high generalisation performance in image
classification. In DCFL-FGP with KT, subtrees of the best
trees found by small populations can be extracted and reused
in the mutation operation during the evolutionary process. This
can help improve the learning performance of every single
small population and find the best tree with better perfor-
mance. With multiple effective trees, an effective ensemble
can be constructed for image classification to achieve high
generalisation performance. The results show that knowledge
transfer can improve the learning performance of DCFL-FGP.

TABLE V
CLASSIFICATION ACCURACY (%) OF DCFL-FGP WITH AND WITHOUT
KNOWLEDGE TRANSFER (KT) ON SIX DATASETS. “+” DENOTES THAT

DCFL-FGP IS SIGNIFICANTLY BETTER AND “=” DENOTES DCFL-FGP
ACHIEVES SIMILAR RESULTS TO DCFL-FGP WITHOUT KT

DCFL-FGP without KT DCFL-FGP with KT
Dataset Max Mean±St.dev Max Mean±St.dev
FEI 1 98.00 93.47±2.83= 98.00 94.80±2.61
FEI 2 96.00 88.73±5.08+ 98.00 91.40±3.02
KTH 98.79 98.16±0.43= 99.09 97.84±0.78
FS 79.95 78.63±0.74= 80.23 78.52±1.09
MB 98.91 98.86±0.04= 98.95 98.85±0.05
Convex 98.12 97.86±0.24+ 98.54 98.22±0.14
Total 2+, 4=

VII. CONCLUSIONS

The overall goal of this paper was to develop a new
algorithm framework than can effectively improve the compu-
tational efficiency of the GP-based feature learning algorithms
without sacrificing the generalisation performance in image
classification. This goal has been successfully achieved by
developing the divide-and-conquer feature learning (DCFL)

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 14

framework and combining it with a GP representation (FGP) to
solve different image classification tasks of varying difficulty.
DCFL splits the training set into several non-overlapping sub-
sets and the whole population into several small populations
of trees so that each tree is evaluated on a small number
of instances. To improve the generalisation performance, a
knowledge transfer method, a fitness function, and an en-
semble method were developed in the DCFL approach. With
these designs, DCFL can build an effective ensemble using
the best trees found by the different small populations for
image classification. Extensive experiments were conducted
to demonstrate the effectiveness of DCFL-FGP on different
types of image classification tasks.

Compared with FGP without the DCFL framework, DCFL-
FGP obtained better generalisation performance at a much
lower computational cost. Compared with other effective
methods, DCFL-FGP achieved better performance in almost
all the comparisons on the 12 different image classification
datasets. The results showed that DCFL-FGP is a promising
and effective approach to image classification. Compared with
a state-of-the-art deep learning method (i.e. EvoCNN), DCFL-
FGP achieved better or comparable performance and used
fewer computational resources. The analysis also showed that
the constructed ensembles obtained better performance than
single individual classifiers, which confirmed the effectiveness
of the proposed ensemble formulation strategy in DCFL.
Further analysis showed that knowledge transfer can improve
the learning performance of DCFL-FGP, leading to an effective
ensemble for image classification.

The DCFL method improved the computational efficiency
of GP for image classification. However, the problem of the
high computational cost of GP has not been completely solved.
In the future, it is still necessary to develop new compu-
tationally cheap GP methods for image classification. Other
future work will focus on exploring the ideas of island-based
models and federated learning in GP for image classification
and extending DCFL for online learning.

REFERENCES

[1] A. Latif, A. Rasheed, U. Sajid, J. Ahmed, N. Ali, N. I. Ratyal, B. Zafar,
S. H. Dar, M. Sajid, and T. Khalil, “Content-based image retrieval and
feature extraction: A comprehensive review,” Math. Probl. Eng., no.
9658350, p. 21pp, 2019.

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, 2017.

[3] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1, no. 2.

[4] H. Al-Sahaf, A. Al-Sahaf, B. Xue, M. Johnston, and M. Zhang,
“Automatically evolving rotation-invariant texture image descriptors by
genetic programming,” IEEE Trans. Evol. Comput., vol. 21, no. 1, pp.
83–101, 2017.

[5] L. Shao, L. Liu, and X. Li, “Feature learning for image classification via
multiobjective genetic programming,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 25, no. 7, pp. 1359–1371, 2014.

[6] Y. Bi, B. Xue, and M. Zhang, “Genetic programming with image-related
operators and a flexible program structure for feature learning to image
classification,” IEEE Trans. Evol. Comput., vol. 25, no. 1, pp. 87–101,
2021.

[7] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep convolutional
neural networks for image classification,” IEEE Trans. Evol. Comput.,
vol. 24, no. 2, pp. 1–14, 2019.

[8] Y. Bi, B. Xue, and M. Zhang, Genetic Programming for Im-
age Classification: An Automated Approach to Image Classifica-

tion. Springer International Publishing, XXVIII, 258pp, 2021, DOI:
https://doi.org/10.1007/978-3-030-65927-1.

[9] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT press, Cambridge, 1992.

[10] Y. Bi, B. Xue, and M. Zhang, “Genetic programming for automatic
global and local feature extraction to image classification,” in Proc. IEEE
CEC, 2018, pp. 1–8.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. IEEE CVPR, 2009,
pp. 248–255.

[13] S. Nguyen, M. Zhang, and K. C. Tan, “Surrogate-assisted genetic pro-
gramming with simplified models for automated design of dispatching
rules,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2951–2965, 2017.

[14] M. E. Roberts, “The effectiveness of cost based subtree caching mecha-
nisms in typed genetic programming for image segmentation,” in Proc.
Workshop Appl. Evol. Comput. Springer, 2003, pp. 444–454.

[15] H. Wang, Y. Jin, and J. O. Jansen, “Data-driven surrogate-assisted
multiobjective evolutionary optimization of a trauma system,” IEEE
Trans. Evol. Comput., vol. 20, no. 6, pp. 939–952, 2016.

[16] A. Song, W. Chen, Y. Gong, X. Luo, and J. Zhang, “A divide-and-
conquer evolutionary algorithm for large-scale virtual network embed-
ding,” IEEE Trans. Evol. Comput., vol. 24, no. 3, pp. 566–580, 2020.

[17] F. Lardeux and A. Goëffon, “A dynamic island-based genetic algorithms
framework,” in Proc. SEAL. Springer, 2010, pp. 156–165.

[18] Y. Bi, B. Xue, and M. Zhang, “A gaussian filter-based feature learning
approach using genetic programming to image classification,” in Proc.
Austra. Joint Conf. Art. Intell. Springer, 2018, pp. 251–257.

[19] D. J. Montana, “Strongly typed genetic programming,” Evol. Comput.,
vol. 3, no. 2, pp. 199–230, 1995.

[20] Y. Bi, B. Xue, and M. Zhang, “Genetic programming with a new
representation to automatically learn features and evolve ensembles for
image classification,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 1769–
1783, 2021.

[21] L. Rodriguez-Coayahuitl, A. Morales-Reyes, and H. J. Escalante, “Struc-
turally layered representation learning: Towards deep learning through
genetic programming,” in Proc. EuroGP. Springer, 2018, pp. 271–288.

[22] B. Tran, B. Xue, and M. Zhang, “Genetic programming for multiple-
feature construction on high-dimensional classification,” Pattern Recog-
nit., vol. 93, pp. 404–417, 2019.

[23] W. La Cava, S. Silva, K. Danai, L. Spector, L. Vanneschi, and J. H.
Moore, “Multidimensional genetic programming for multiclass classifi-
cation,” Swarm Evol. Comput., vol. 44, pp. 260–272, 2019.

[24] H. Al-Sahaf, Y. Bi, Q. Chen, A. Lensen, Y. Mei, Y. Sun, B. Tran, B. Xue,
and M. Zhang, “A survey on evolutionary machine learning,” J. Roy. Soc.
New Zeal., vol. 49, no. 2, pp. 205–228, 2019.

[25] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and X. Yao,
“Scaling up dynamic optimization problems: A divide-and-conquer
approach,” IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 1–15, 2020.

[26] K. Ono, Y. Hanada, M. Kumano, and M. Kimura, “Enhancing island
model genetic programming by controlling frequent trees,” J. Artif.
Intell. Soft Comput. Res., vol. 9, no. 1, pp. 51–65, 2019.

[27] A. Gupta, Y.-S. Ong, and L. Feng, “Insights on transfer optimization:
Because experience is the best teacher,” IEEE Trans. Emerg. Topics
Comput. Intell., vol. 2, no. 1, pp. 51–64, 2017.

[28] M. Iqbal, B. Xue, H. Al-Sahaf, and M. Zhang, “Cross-domain reuse of
extracted knowledge in genetic programming for image classification,”
IEEE Trans. Evol. Comput., vol. 21, no. 4, pp. 569–587, 2017.

[29] M. Jiang, Z. Huang, L. Qiu, W. Huang, and G. G. Yen, “Transfer
learning-based dynamic multiobjective optimization algorithms,” IEEE
Trans. Evol. Comput., vol. 22, no. 4, pp. 501–514, 2017.

[30] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial evolution: toward
evolutionary multitasking,” IEEE Trans. Evol. Comput., vol. 20, no. 3,
pp. 343–357, 2015.

[31] J. Ding, C. Yang, Y. Jin, and T. Chai, “Generalized multitasking for
evolutionary optimization of expensive problems,” IEEE Trans. Evol.
Comput., vol. 23, no. 1, pp. 44–58, 2017.

[32] Z.-H. Zhou, Ensemble methods: foundations and algorithms. Chapman
and Hall/CRC, 2012.

[33] A. Rosales-Pérez, S. Garcı́a, J. A. Gonzalez, C. A. C. Coello, and
F. Herrera, “An evolutionary multiobjective model and instance selection
for support vector machines with Pareto-based ensembles,” IEEE Trans.
Evol. Comput., vol. 21, no. 6, pp. 863–877, 2017.

[34] B. Zhang, Y. Chen, W. Fan, E. A. Fox, M. Gonçalves, M. Cristo,
and P. Calado, “Intelligent GP fusion from multiple sources for text

IEEE TRANSACTIONS ON XX, VOL. XX, NO. X, MONTH YEAR 15

classification,” in Proc. CIKM, 2005, pp. 477–484.
[35] K. Nag and N. R. Pal, “A multiobjective genetic programming-based

ensemble for simultaneous feature selection and classification,” IEEE
Trans. Cybern., vol. 46, no. 2, pp. 499–510, 2016.

[36] N. M. Rodrigues, J. E. Batista, and S. Silva, “Ensemble genetic
programming,” in Proc. EuroGP. Springer, 2020, pp. 151–166.

[37] Y. Bi, B. Xue, and M. Zhang, “Evolving deep forest with automatic
feature extraction for image classification using genetic programming,”
in Proc. PPSN. Springer, 2020, pp. 3–18.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, and et al., “Scikit-learn:
Machine learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–
2830, 2011.

[39] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, 2011.

[40] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data En., vol. 22, no. 10, pp. 1345–1359, 2009.

[41] C. E. Thomaz, “Fei face database,” online:
http://fei.edu.br/˜cet/facedatabase.html, 2012.

[42] P. Mallikarjuna, A. T. Targhi, M. Fritz, E. Hayman, B. Caputo, and J.-
O. Eklundh, “The kth-tips2 database,” Computational Vision and Active
Perception Laboratory, Stockholm, Sweden, pp. 1–10, 2006.

[43] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning
natural scene categories,” in Proc. IEEE CVPR, vol. 2, 2005, pp. 524–
531.

[44] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category
models to new domains,” in Proc. ECCV. Springer, 2010, pp. 213–226.

[45] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,
“An empirical evaluation of deep architectures on problems with many
factors of variation,” in Proc. ICML. ACM, 2007, pp. 473–480.

[46] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[47] Y. Bi, B. Xue, and M. Zhang, “An automated ensemble learning
framework using genetic programming for image classification,” in Proc.
GECCO, 2019, pp. 365–373.

[48] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” in Proc.
ICML. Omnipress, 2011, pp. 833–840.

[49] T. Yu, C. Guo, L. Wang, S. Xiang, and C. Pan, “Self-paced autoencoder,”
IEEE Signal Proc. Let., vol. 25, no. 7, pp. 1054–1058, 2018.

[50] J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1872–1886,
2013.

[51] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “PCANet: A
simple deep learning baseline for image classification?” IEEE Trans.
Image Process., vol. 24, no. 12, pp. 5017–5032, 2015.

[52] G. Qian and L. Zhang, “A simple feedforward convolutional conceptor
neural network for classification,” Appl. Soft Comput., vol. 70, pp. 1034–
1041, 2018.

[53] H. Li and M. Gong, “Self-paced convolutional neural networks,” in Proc.
IJCAI, 2017, pp. 2110–2116.

[54] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with
the stochastic average gradient,” Math. Program., vol. 162, no. 1-2, pp.
83–112, 2017.

[55] S. Young, T. Abdou, and A. Bener, “Deep super learner: A deep
ensemble for classification problems,” in Proc. 31st Can. Conf. Art.
Intell. Springer, 2018, pp. 84–95.

[56] Z.-H. Zhou and J. Feng, “Deep forest,” Natl. Sci. Rev., vol. 6, no. 1, pp.
74–86, 2018.

[57] F. Chollet et al., “Keras,” https://keras.io, 2015.
[58] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[59] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” J. Mach. Learn.
Res., vol. 13, no. Jul, pp. 2171–2175, 2012.

[60] Y. Hold-Geoffroy, O. Gagnon, and M. Parizeau, “Once you SCOOP, no
need to fork,” in Proc. ACM XSEDE, 2014, p. 60.

[61] E. László, P. Szolgay, and Z. Nagy, “Analysis of a gpu based cnn
implementation,” in Proc. IEEE CNNA, 2012, pp. 1–5.

[62] S. Potluri, A. Fasih, L. K. Vutukuru, F. Al Machot, and K. Kyamakya,
“Cnn based high performance computing for real time image processing
on gpu,” in Proc. IEEE INDS’11 & ISTET’11, 2011, pp. 1–7.

Ying Bi (M’17) received the B.Sc.degree in 2013
from Wuhan Polytechnic University, Hubei, China,
the M.Sc. degree in 2016 from Shenzhen University,
Shenzhen, China, and the Ph.D. degree in 2020 from
Victoria University of Wellington, New Zealand.

She is currently a Post-Doctoral Research Fellow
with the School of Engineering and Computer Sci-
ence, Victoria University of Wellington. Her current
research interests include evolutionary computation,
computer vision, and machine learning. She has
published over 30 papers in this field, including top

journals and conference papers.
She is a member of the IEEE Computational Intelligence Society and has

been severing as reviewers for top international journals and conferences,
such as IEEE Transactions on Evolutionary Computation, IEEE Transactions
on Cybernetics, IEEE Congress on Evolutionary Computation (CEC), and the
Genetic and Evolutionary Computation Conference (GECCO).

Bing Xue (M’10-SM’21) received the B.Sc. degree
from the Henan University of Economics and Law,
Zhengzhou, China, in 2007, the M.Sc. degree in
management from Shenzhen University, Shenzhen,
China, in 2010, and the Ph.D. degree in computer
science in 2014 at Victoria University of Wellington
(VUW), New Zealand.

She is currently a Professor in Computer Science,
and Program Director of Science in the School of
Engineering and Computer Science at VUW. She
has over 300 papers published in fully refereed

international journals and conferences and her research focuses mainly on
evolutionary computation, machine learning, classification, symbolic regres-
sion, feature selection, evolving deep neural networks, image analysis, transfer
learning, multi-objective machine learning.

Dr Xue is currently the Chair of IEEE Computational Intelligence Society
(CIS) Task Force on Transfer Learning & Transfer Optimization, and Vice-
Chair of IEEE CIS Evolutionary Computation Technical Committee, Editor
of IEEE CIS Newsletter,. Vice-Chair of IEEE Task Force on Evolutionary
Feature Selection and Construction, and Vice-Chair IEEE CIS Task Force
on Evolutionary Deep Learning and Applications. She has also served as
associate editor of several international journals, such as IEEE Computational
Intelligence Magazine and IEEE Transactions on Evolutionary Computation
and IEEE Transactions on Artificial Intelligence.

Mengjie Zhang (M’04-SM’10-F’19) received the
B.E. and M.E. degrees from Artificial Intelligence
Re- search Center, Agricultural University of Hebei,
Hebei, China, and the Ph.D. degree in computer
science from RMIT University, Melbourne, VIC,
Australia, in 1989, 1992, and 2000, respectively.

He is currently Professor of Computer Science,
Head of the Evolutionary Computation Research
Group, and the Associate Dean (Research and In-
novation) in the Faculty of Engineering. His current
research interests include evolutionary computation,

particularly genetic programming, particle swarm optimization, and learning
classifier systems with application areas of image analysis, multi-objective
optimization, feature selection and reduction, job shop scheduling, and transfer
learning. In these areas, he has published over 700 research papers in refereed
international journals and conferences.

Prof. Zhang is a Fellow of Royal Society of New Zealand, a Fellow of
IEEE, an IEEE CIS Distinguished Lecturer, and have been a Panel member
of the Marsden Fund (New Zealand Government Funding). He was the chair
of the IEEE CIS Intelligent Systems and Applications Technical Committee,
and chair for the IEEE CIS Emergent Technologies Technical Committee
and the Evolutionary Computation Technical Committee, and a member of
the IEEE CIS Award Committee. He is a vice-chair of the IEEE CIS Task
Force on Evolutionary Feature Selection and Construction, a vice-chair of
the Task Force on Evolutionary Computer Vision and Image Processing, and
the founding chair of the IEEE Computational Intelligence Chapter in New
Zealand. He is also a committee member of the IEEE NZ Central Section.

https://keras.io

	Introduction
	Background and Related Work
	GP for Image Feature Learning
	GP-based Feature Learning Algorithms

	Knowledge Transfer
	Ensemble Methods for Classification

	The Proposed Approach
	Algorithm Framework
	Approximated Running/Computation Time Speed-Up Analysis

	Knowledge Transferring/Sharing in DCFL
	Fitness Evaluation
	Ensemble Formulation for Image Classification

	Experiment Design
	Benchmark Datasets
	Benchmark Methods
	Parameter Settings

	Results and Discussions
	Classification Performance
	Comparison with FGP
	Comparison with Benchmark Methods on Datasets 1-5
	Comparison with Benchmark Methods on Datasets 6-12

	Training Time
	Summary

	Further Analysis
	Analysis on the Constructed Ensembles
	Effectiveness of Knowledge Transfer

	Conclusions
	Biographies
	Ying Bi
	Bing Xue
	Mengjie Zhang

