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Abstract—Few-shot image classification is an important but
challenging task due to high variations across images and a small
number of training instances. A learning system often has poor
generalisation performance due to the lack of sufficient training
data. Genetic programming (GP) has been successfully applied
to image classification and achieved promising performance.
This paper proposes a GP-based approach with a dual-tree
representation and a new fitness function to automatically learn
image features for few-shot image classification. The dual-tree
representation allows the proposed approach to have better
search ability and learn richer features than a single-tree repre-
sentation when the number of training instances is very small.
The fitness function based on the classification accuracy and the
distances of the training instances to the class centroids aims to
improve the generalisation performance. The proposed approach
can deal with different types of few-shot image classification tasks
with various numbers of classes and different image sizes. The
results show that the proposed approach achieves significantly
better performance than a large number of state-of-the-art
methods on nine 3-shot and 5-shot image classification datasets.
Further analysis shows the effectiveness of the new components
of the proposed approach, its good searchability, and the high
interpretability of the evolved solutions.

Index Terms—Genetic Programming; Representation; Fitness
Evaluation; Few-Shot Learning; Image Classification

I. INTRODUCTION

Recently, few-shot learning (FSL) has gained increasingly
more attention and become a popular topic in artificial intelli-
gence and machine learning. FSL aims to learn from a small
number of training instances to solve a task [1]. When the
number of training instances is one in each class, the task
is known as one-shot learning. FSL can reduce human effort
and expense/cost of collecting and/or labelling a large number
of training instances. Furthermore, for some domains, such
as medicine, biology and remote sensing, it is often difficult
to obtain a large set of labelled training instances because of
privacy, safety or other issues. FSL can provide solutions to
the machine learning problems in these domains by only using
a small number of training instances [1].
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Few-shot image classification (FSIC) is a typical task in FSL
that aims to classify images into a number of predefined groups
according to their contents in the images using a very small
number of training instances [1], [2]. FSIC can be applied to
deal with tasks such as biological identification and medical di-
agnosis that typically have a small number of labelled images.
Generally, images are sampled under different environments
and have high variations. A few training instances with limited
information cannot effectively represent the class distribution
[2]. Thus, it is challenging to build effective models/classifiers
for FSIC using a very small number of training instances.

Most current image classification methods have several
limitations to achieve FSIC. The dominant image classification
methods, i.e., deep convolutional neural networks (CNNs),
often have millions of parameters, e.g., AlexNet has 138
million parameters [3]. These deep models typically require
a large number of instances to train [4]. Therefore, they may
not be effective for FSIC. More importantly, existing methods
cannot be well generalised to the (unseen) test set when the
number of training instances is small. In other words, the
generalisation performance of these methods are often poor
due to the lack of training data.

Existing methods for FSIC focus on two mainstreams to
address the aforementioned difficulties. The first one aims
to generate more images using different rules and add these
images to the small training set as data augmentation. For
example, new images can be generated by simple rules such
as rotation, flipping, blurring, and cropping [3] or learned
representations and embeddings, such as by Auto-Encoders [5]
and generative adversarial networks (GANs) [6]. The second
one focuses on transfer learning, i.e., transferring learned
models and parameters from the domain with a large number
of training instances to the FSIC domain [7], [8]. Based on
this, many methods have been developed, including multitask
learning [9], embedding learning [10], [11], and meta-learning
[12]. However, these methods still have limitations. It is
straightforward to generate more data to enlarge the training
set so that the normal image classification methods can be
applied to FSIC. However, the generated data only bring
limited information to the training set [1]. It is also possible
that the generated data harm the classification performance due
to the distribution gap between the real data and the generated
(estimated) data. For the second type of methods, it is neces-
sary to find suitable and similar source domain datasets for
effective knowledge transfer. Knowledge transfer could help
when the number of instances is very small. However, in some
real-world scenarios, it is not always possible to find source
datasets with sufficient training instances that are similar to
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the FSIC task. More importantly, transfer learning itself is
difficult, requiring more investigations on what to transfer, how
to transfer and when to transfer. Therefore, this study focuses
on solving FSIC without using data augmentation and transfer
learning, i.e., follows a traditional yet simple classification
procedure that only uses the training set of the FSIC task.

Genetic programming (GP) is an evolutionary computation
(EC) technique. It automatically evolves computer programs
to solve a problem [13]. GP has been applied to many
optimisation and learning tasks, including feature construction,
classification, regression, and clustering [14], [15], [16], [17].
GP has also been used to automatically learn effective fea-
tures for image classification and achieved promising results
[18], [19]. Unlike CNNs, GP-based methods typically evolve
trees/programs consisting of functions to extract features for
image classification. A few GP-based methods have been
developed to learn from a small number of training instances
and showed their potential ability for FSIC [20], [21], [22],
[23]. However, these works have only addressed texture clas-
sification and two-class image classification. The potential
ability of GP for FSIC has not been extensively investigated
on other types of image classification tasks.

The overall goal of this paper is to develop a GP-based
approach for FSIC. It is known that poor generalisation
performance is a common issue when the number of training
instances is very small. To address this issue, a new fitness
function is developed to allow the proposed approach to find
effective soluitons for FSIC. In addition, a dual-tree repre-
sentation is employed in the proposed approach to improve
its learning performance. The proposed approach is termed as
DTGPN, indicating Dual-Tree GP with a New fitness function.

The main contributions are summarised as follows.
• A DTGPN approach is developed to automatically evolve

programs/trees with potentially high interpretability for
FSIC. The proposed approach is able to solve many-class
and few-class FSIC problems without using data augmen-
tation and transfer learning, which is different from most
of existing neural network (NN)-based FSIC methods [1].
This is the first time to apply GP to solve many different
FSIC tasks. The proposed approach achieves significantly
better performance than a large number of competitive
benchmark methods on different FSIC tasks.

• A dual-tree representation is employed in DTGPN to
improve its search ability and learning performance. The
dual-tree representation allows DTGPM to explore a
larger potential area and find a better solution that extracts
richer features than a single-tree representation used in
many existing methods [24], [25], [26]. DTGPN with this
representation achieves better learning and generalisation
performance than that with a single-tree representation
when the training set is very small.

• A new fitness function is developed to improve the
generalisation performance of DTGPN without adding
too much computational cost. By optimising the fitness
function, DTGPN is able to learn features and classifiers
with potentially high generalisation ability. The results
show that the fitness function can improve the generali-
sation performance of DTGPN.

II. BACKGROUND AND RELATED WORK

A. Few-Shot Image Classification (FSIC)

FSIC is a representative task in FSL. FSIC aims to solve
image classification tasks when the number of training in-
stances is very small. An image classification task can be
denoted as T with a dataset D = {Dtrain, Dtest}, con-
sisting of a training set and a test set. The training set is
Dtrain = {(x0, y0), (x1, y1), . . . , (xn, yn)} and the test set is
Dtest = {x0,x2, . . . ,xm}. x ∈ RM×L or RM×L×3 denotes
an image with a size of M × L (i.e. a gray-scale image) or
M × L × 3 (i.e. a colour image with three channels). y ∈ Z
denotes the class label. n indicates the number of training
images and m indicates the number of testing images. A FSIC
task is often described as a C-way-K-shot classification task,
where C indicates the number of classes and K indicates the
number of instances per class in the training set. Thus, the
total number of training instances is n = C ×K.

B. Genetic Programming (GP)

GP can automatically evolve solutions in a form of pro-
grams/trees to solve a problem without requiring domain
knowledge. In tree-based GP, a solution is represented by a
tree, consisting of internal nodes and leaf nodes. The internal
nodes are often constructed by functions or operators, such
as arithmetic functions and logical functions. The leaf nodes
are often constructed by terminals, i.e., variables/features and
ephemeral random constants. Figure 1 shows two example GP
trees. The left one is a classic GP tree that can be reformulated
as ((x1 + x2)/x3)× (x1 + 0.9). The right one is an example
GP tree for image feature extraction. This tree can be reformu-
lated as Root(O2(O1(Image)), O3(Image, Image)), where
Root, O1, O2, and O3 are some functions or operators dealing
with the input image (Image). The tree-based representation
allows GP to automatically evolve variable-length/depth solu-
tions consisting of different types of functions to solve a task.
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/
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x

+
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Fig. 1. A classic GP tree (left) and an example GP tree for image feature
extraction (right).

C. Related Work

1) Image Classification: Traditional methods typically use
manually extracted features to solve image classification [14].
In recent years, CNNs, which can automatically learn infor-
mative features from images, have been widely applied to
image classification and achieved promising results [3], [27].
However, these methods have a number of limitations, e.g.,
requiring rich expertise to design CNN architectures, exten-
sive computational resources and a large number of training
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instances. Therefore, many methods have been employed to
automatically construct CNNs for image classification. Chen
et al. [28] developed genetic algorithms (GAs) with a variable-
length encoding and new genetic operators to automatically
evolve convolutional variational autoencoders for image clas-
sification. This method achieved better performance than nine
variants of autoencoders on three well-known datasets. Lu
et al. [29] proposed a multiobjective GA method to search
for neural architectures with simultaneously optimising the
objectives of the classification performance and the floating
point operations. This method achieved superior performance
than the other methods on four image datasets. More related
work on image classification can be found in [30], [16].

2) GP for Image Classification: Bi et al. [26] proposed
a GP method with image descriptors to automatically learn
global and/or local features for image classification. This
method achieved better performance than many baseline meth-
ods, including CNN-based methods and the methods using
manually extracted features, on eight different image datasets.
Shao et al. [25] proposed a multi-objective GP method to
automatically learn features for image classification by simul-
taneously maximising classification performance and minimis-
ing the tree size. This method achieved better classification
performance on four datasets than a number of traditional
methods and NN-based methods. Bi et al. [31] developed an
evolutionary deep learning method using GP with convolution
operators to automatically learn image features for classifica-
tion. This method described image features using convolution
and pooling layers, and achieved better performance than
simple CNNs and other traditional methods. These existing
methods showed the effectiveness of GP in image classification
[31], [25], [26]. However, these methods may have poor
generalisation on FSIC since they uses a large number of
training instances during the evolutionary process.

Several GP methods have been developed for image classi-
fication using a small number of training instances. Al-Sahaf
et al. [23] proposed an one-shot GP method and a compound-
GP method for image classification with one or a few training
instances per class. The one-shot GP method uses two images
per class to learn a similarity measure. The compound-GP
method detects different regions of images, where local binary
pattern features can be extracted for classification. However,
these two methods have only been applied to two-class image
classification. Al-Sahaf et al. [21] proposed a GP method
to describe rotation-invariant features for texture image clas-
sification using a small number of training instances. This
method uses a similar way as LBP to describe texture features
based on the learned descriptors. This method achieved better
classification performance than LBP and its variants. In [20],
a GP method was developed to learn a variable number of
features for texture classification. This method achieved better
classification performance than several GP-based methods and
other methods using handcrafted features. However, these two
methods were developed for texture feature description, which
may not be effective for classifying images that do not have
rich texture features.

3) Few-Shot Image Classification: Many methods have
been developed for image classification with a small or limited

number of training instances. The most straightforward method
is to generate more training images to enlarge the training set
so that a normal image classification method can be applied
to. Krizhevsky et al. [3] used translation, horizontal reflection
and pixel value modification to generate more images for deep
model training. The results showed that the generalisation
performance of deep models could be improved by using a
large training set. However, this method could only introduce
limited information for model training when there are only a
few unique training images. Antoniou et al. [6] proposed a data
augmentation GAN (DAGAN) method to automatically learn
images by considering wide variations. The images generated
by DAGAN are added to the small training set and the
classification performance of the classifier can be increased.
Koch et al. [10] proposed convolutional Siamese NN (net) for
FSIC. Convolutional Siamese net uses two CNNs with shared
weights to learn a function that distinguishes whether two
input images are similar or not. It is one of the most popular
NNs for FSIC. It achieved better classification performance
than other methods on one-shot image classification datasets.
Meta-learning [12] has also been applied to FSIC. It uses
a learning-to-learn scheme to learn a meta-learner using a
collection of related FSIC tasks and transfers the learned
model to the target FSIC task. The meta-learner is expected
to improve the generalisation performance on the FSIC task.

To sum up, although many FSIC methods have been de-
veloped, there are different limitations. Most existing methods
are based on NNs, which have a large number of trainable pa-
rameters, need rich expertise to design the CNN architectures
and large computation resources [32]. The data-generation-
based methods need efforts to design better rules or methods
to learn rules to generate new images that can improve the
generalisation performance. The meta-learning-based FSIC
methods need to find a large number of similar FSIC tasks to
train an effective meta-learner, which makes the whole process
complex and the learned model difficult to understand and
explain. Therefore, it is worth developing new methods for
FSIC without using data augmentation and transfer learning,
which could be more applicable and practical in many real-
world scenarios.

The existing works show the potential of GP for FSIC,
but they focus on very limited applications, i.e., texture
classification and two-class image classification. This study
will explore the potential of GP for FSIC without the use of
data augmentation and transfer learning. It is known that poor
generalisation performance is a common issue in the methods
for FSIC. To address this, we will develop a GP approach
with a new fitness function to achieve high generalisation
performance in different FSIC tasks.

III. THE PROPOSED APPROACH

This section describes the DTGPN approach for FSIC,
including the dual-tree representation, the new fitness function,
the fitness evaluation process, and the overall algorithm.

A. Dual-Tree Representation
GP with a multi-tree representation (i.e., an individual has

more than one tree) can be found in the literature, such as using
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Fig. 2. The image classification process using two GP trees and support
vector machines (SVMs).

A set of featuresA set of features

A set of features A set of featuresLearned features

An individual

Fig. 3. The dual-tree representation of DTGPN. Each individual is represented
by two trees. The features described by each tree are combined to form a
feature vector for classification.

multi-tree GP to construct multiple features for classification
in [33]. GP with a multi-tree representation often has better
search ability and achieve better results than that with a
single-tree representation. In this paper, GP with a dual-tree
representation is proposed to learn features for FSIC. The dual-
tree representation is shown in Fig. 3. In this representation,
each individual is represented by two GP trees. Each tree can
produce a variable number of features from an input image
using different function nodes. The features produced by the
two trees are concatenated to form a feature vector as the
learned features for few-shot classification. We expect this to
learn rich and informative features that cover more possible
image variations and achieve good performance when the
number of training instances is very small.

A recently proposed tree structure [26] is used in DTGPN to
represent each tree in an individual. The tree structure allows
GP to automatically learn various types of image features,
i.e., a combination of different global and/or local features
[26]. However, this tree structure increases the tree depth to
have more functions that extract rich combinations of features,
which is not effective for search. Increasing the tree width is an
effective way to find more possible combinations of features.
Therefore, we use a dual-tree representation in DTGPN to
increase the search ability.

1) Tree Structure: The tree structure of DTGPN is based
on strongly-typed GP (STGP) [34]. It consists of a region
detection layer, a feature extraction layer and a feature con-
catenation layer. The region detection layer is to detect small
but important regions from the large input image. The feature
extraction layer uses five representative image descriptors to
extract features from the detected regions or the input image.
The feature concatenation layer is to concatenate the extracted

features to form a feature vector. Three example trees are
illustrated in Fig. 4 to show this structure. The region detection
and feature extraction layers have a tree depth of one, while
the feature concatenation layer has a flexible tree depth. To
produce more features, it is necessary to increase the tree depth
of the feature concatenation layer. However, the tree depth of
such a higher-level layer is not easy to be increased during the
search process based on the mutation and crossover operations
due to the type and tree depth constraints in GP. To alleviate
the search pressure, a dual-tree representation is employed to
search for rich features by increasing the width of the tree.

2) Terminal Set: The terminal set is comprised of the
Image, X , Y , S, W , and H terminals. The Image terminal
denotes the input image, which is an array normalised dividing
by 255. The other terminals are ephemeral random constants
of GP and represent the parameters of the region detection
functions. Their details are listed as follows.

• Image: a M×L image with values in the range of [0, 1]
• X: the horizontal coordinate of the top-left point of the

detected region in the image. It is an integer in the range
of [0, M − 20]

• Y : the vertical coordinate of the top-left point of the
detected region in the image. It is an integer in the range
of [0, L− 20]

• S: the size of a detected square region. It is an integer in
the range of [20, 50]

• W : the width of a detected rectangle region. It is an
integer in the range of [20, 50]

• H: the height of a detected rectangle region. It is an
integer in the range of [20, 50]

3) Function Set: The function set has two region detec-
tion functions (i.e., Region S and Region R), five feature
extraction functions in the global and local scenarios (i.e.,
G DIF , G Hist, G SIFT , G HOG, G LBP , L DIF ,
L Hist, L SIFT , L HOG, and L LBP ) and two feature
concatenation functions (i.e., FeaCon2 and FeaCon3). The
region detection functions, Region S, and Region R, detect
square and rectangle regions from the large input image,
respectively. The region detected by Region S is Image[X :
min(M, X + S), Y : min(L, Y + S)] and the region
detected by Region R is Image[X : min(M, X +W ), Y :
min(L, Y + H)]. Note that Region S is a special case of
Region R and the use of Region S allows DTGPN to easily
detect square regions, since only using Region R typically
result in rectangle regions. The feature extraction functions
are based on five representative image descriptors, i.e., DIF
[35], Histogram (Hist), SIFT [36], HOG [37], and LBP [38].
These descriptors are developed into the global (G) and local
(L) scenarios to extract global features from the whole image
and local features from the detected region, respectively. Each
of these functions takes an image or region as input and
returns a set of features. The numbers of features produced
by these functions are different. More details of them can be
seen in [26]. The two feature concatenation functions can
concatenate features extracted from different regions/images
into a feature vector. These two functions can concatenate two
or three feature vectors into a feature vector.
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Fig. 4. Three example trees/programs to show the tree structure. These trees are able to extract (a) the combination of global features, (b) the combination
of local features and (c) the combination of global and local features.
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Fig. 5. The same-index-crossover operation.

Note that the region detection functions themselves are sen-
sitive to the position changes. However, the learning process
allows DTGPN to filter out the regions that are not informative
and select the regions that contain informative features. This
may allow the learned features from those regions are not so
sensitive to translation. The representation enables DTGPN
to learn features from the whole image and/or features from
the detected region. Specifically, DTGPN can extract global
features from the whole image and does not necessarily have
the region detection functions in the trees, which means that
the learned features can be translationally invariant.

4) Crossover and Mutation Operators: During the evolu-
tionary process, the same-index-crossover operator and the
mutation operator are used to generate new individuals for
the next generation. The same-index-crossover operator pairs
the trees with the same index of the two selected parents
and performs standard single-tree crossover operation on each
paired two trees to generate new offspring. An example
is shown in Fig. 5 to demonstrate the crossover process.
Specifically, it randomly selects crossover points from each
two trees and swaps the branches of these two trees to generate
two new trees. The mutation operator mutates every single
tree in an individual to generate an offspring. For each tree,
it randomly selects one subtree and replaces it with a new
randomly generated subtree.

B. Fitness Evaluation Using The New Fitness Function

One of the key contributions of this paper is to design a
new fitness evaluation method and a new fitness function for
DTGPN to learn effective features with high generalisation
performance for FSIC. When the number of training instances
is very small, a potential issue is overfitting or underfitting,

which leads to poor generalisation performance on the unseen
(test) set. The GP-based feature learning algorithms often learn
a set of features from images and evaluate the performance of
these features on a training set. The commonly used fitness
function is the classification accuracy, such as in [25], [26],
[18]. However, when the number of training instances is very
small, the current fitness function can not accurately evaluate
the performance of the learned features because of the over-
fitting or underfitting issue. For example, it may easily reach
100% accuracy on the training set at early generations. To
address this, we develop a new fitness function in DTGPN for
FSIC. The fitness function is an integrated objective function
of the classification accuracy and a distance measure, aiming
to improve the generalisation performance without adding too
much computational cost. The fitness evaluation process and
the fitness function are introduced as follows.

1) Overall Fitness Evaluation Process: The fitness eval-
uation process is described in Algorithm 1 and the fitness
function is defined in Eq. (1). In the fitness evaluation process,
only the training set is employed. For a C-way-K-shot image
classification task, the training set is Dtrain = {(xi, yi)}C×Ki=0

(x ∈ RM×L, y ∈ Z), having K training images in each of
the C classes, where M × L denotes the size of the image
and C denotes the number of classes. Each image in Dtrain

is transformed into features by two trees of a GP individual.
The features extracted by two trees are concatenated to form a
feature vector to describe an image (as shown in Fig. 3). The
transformed training set is Dtr

train = {(xi, yi)}C×Ki=0 (x ∈ Rn,
y ∈ Z), where n denotes the number of features extracted by
the two trees of a GP individual. The min-max normalisation
is performed to rescale different value ranges of the extracted
features into [0, 1]. The normalised training set is denoted as
Dnrom

train = {(xi, yi)}C×Ki=0 . Based on Dnrom
train , SVM classifiers

(which is the most commonly used one in GP) are trained
and the fitness value is calculated. The SVM classification
algorithm with a linear kernel is employed for classification
because it often achieves high generalisation performance and
has fewer parameters than it with other kernels [25], [26].

The main process to calculate the fitness value follows the
step of classification with stratified K-fold cross-validation.
Unlike the traditional one, which often uses K=5 or 10, we
set the value of K to the number of instances in each class
in the training set. For example, K equals 3 for a 3-shot
image classification problem. The normalised training set is
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Algorithm 1: Fitness Evaluation
Input : Dtrain: the training set of a C-way-K-shot

image classification task; p: the individual
with two trees to be evaluated.

Output : The fitness value for p: f(p).

1 for each image i in Dtrain do
2 f left

i , fright
i ← features transfomred by the left

and right trees of individual p from image i,
respectively;

3 fi ← {f left
i , fright

i };
4 end
5 Dtr

train ← the training set represented by the learned
features;

6 Dnorm
train ← the training set after min-max normalisation;

7 Split Dnorm
train into K folds with each has one instance

per class;
8 for k = 1; k ≤ K; k ++ do
9 Use the kth fold as the evaluation test set and the

remaining K − 1 folds as the evaluation training
set;

10 Train SVM classifiers using the evaluation training
set and test the classifiers on the evaluation test
set;

11 Acck ← the accuracy of all the instances in the
kth fold;

12 Use the trained SVM classifiers to transform
Dnorm

train into the decision space;
13 uc (1 ≤ c ≤ C)← the centroid of class c of the

evaluation training set in the deceion space;
14 Distk = 0;
15 for each instance i in the evaluation test set do
16 Si ← the distance between instance i to the

centroid of the same class of the evaluation
training set;

17 Di ← the sum of all the distances between
instance i to the centroids of the different
classes of the evaluation training set;

18 Distk = Distk + Si/Di;
19 end
20 Acck −Distk ← calculate the fitness value of the

kth fold;
21 end
22 f(p)←Average the fitness value by dividing K;
23 Return f(p).

split into non-overlapping K folds. Specifically, each fold has
C instances in C classes, i.e., each class has one instance. Each
time one fold with C instances is employed as the evaluation
test set and the remaining K−1 folds with C(K−1) instances
are used as the evaluation training set. The evaluation training
set is used to train SVM classifiers. Based on the trained
classifier(s), the classification accuracy (Acck defined in Eq.
2) and the distance (Distk defined in Eq. 3) of the evaluation
test set are calculated. Repeating this process K times, K
Acck and Distk values are obtained. The fitness value is then
calculated using Eq. (1).

2) The New Fitness Function: The fitness function is an
integrated function of the classification accuracy and a new
distance measure. The classification accuracy aims to evaluate
the classification performance of the learned features. The dis-
tance measure aims to increase the generalisation performance
of the learned features and the SVM classifiers. The fitness
function to be maximised is defined as

Fitness =
1

K

K∑
k=1

(Acck −Distk), (1)

where K denotes the number of folds, which equals to the
number of instances in the training set. Acck denotes the
classification accuracy of the kth fold of the evaluation test
set and Distk denotes the distance measure, which is based
on the distances between the instances in the kth fold of the
evaluation test set and the class centroids of the evaluation
training set. In Eq. (1), the Acck is based on (2).

Acc =
Ncorrect

Ntotal
, (2)

where Ncorrect denotes the number of correctly classified
instances and Ntotal denotes the total number of instances
in the evaluation test set. Note that k is omitted for better
presentation.

3) The New Distance Measure: The Distk is defined in Eq.
(3), which is a new distance measure based on the evaluation
training set and the evaluation test set. Distk measures the
distances between the instances in the evaluation test set to the
class centroids of the evaluation training set, which is related
to not only the performance of the learned features but also the
performance of the classifiers. With optimising both parts, the
generalisation performance is expected to be improved. This
will be discussed in the later paragraphs.

Dist =

C∑
c=1

∑M
m=1(zc,m − uc,m)2∑C

j 6=c,j=1

∑M
m=1(zj,m − uj,m)2

, (3)

where C denotes the number of classes (and the number
of instances in the evaluation test set). z = {z1, . . . , zM}
is a single value or a vector, denoting an instance in the
decision space based on SVM classifiers, which is the sum
of the weighted features and intercept. M denotes the number
of features in z. uc = {uc,1, . . . , uc,M} denotes the class
centroid of the instances in class c.

Unlike the existing distance measure employed in many GP
methods, such as [20, 20, 23], which calculate the distance
based on the learned feature space, the distance measure Dist
is based on the decision space. The decision space is defined
as the space that the features transformed by the classifiers.
Optimising the distance based on the learned feature space
does not necessarily improve the performance because the
classification process has feature weighting. Note that this
distance measure is suitable for SVM or other classifiers that
have feature weighting or transformation. We discussed SVM
because it is the most commonly used classifier and is treated
as a part of the proposed approach to image classification.
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Fig. 6. An example to illustrate the distance between the evaluation test
instances and each class centroid in a 2-way-3-shot classification problem.
The Dist value of instance 1 is d1/d2 and the Dist value of instance 2 to
the class centroid is d4/d3. The total distance is d1/d2 + d4/d3.

We will give a detailed explanation of how an instance is
represented in a decision space based on the SVM classi-
fiers. For a binary classification task, SVM builds a binary
classifier expressed by {w0, w1, . . . , wn−1, b}. For a C-class
classification task, SVM builds C binary classifiers expressed
by {{w1,0, . . . , w1,n−1, b1}, . . . , {wC,0, . . . , wC,n−1, bC}} us-
ing the one-versus-rest (OvR) strategy [39]. An instance x =
{x1, x2, . . . , xn} is transformed into z using these classifiers.
Eq. 4 shows the calculation of z when there is only one
classifier, i.e., the task is a binary classification task. Eq. 5
shows the calculation of z for a multi-class classification task.

z =

n∑
i=1

wi ∗ xi + b, (4)

z = {
n∑

i=1

w1,i ∗ xi + b1, . . . ,

n∑
i

wC,i ∗ xi + bC}, (5)

where n denotes the number of features. In the DTGPN
approach, the value of n is dynamically changed.

After transforming all the instances into the decision space,
the class centroid (uc) of the evaluation training set is calcu-
lated according to Eq. (6).

uc =
1

Nc

Nc∑
yi=c,i=0

zi. (6)

where Nc denotes the number of instances in class c.
The distance measure (in Eq. 3) is a newly designed

measure, which aims to minimise the distances between the
instances and the centroid of the same class and maximise the
distances between the instances and the centroids of the other
classes. A simple example is shown in Fig. 6 to further explain
how the distance is calculated in the decision space.

By minimising the distance defined in Eq. 3, the instances
in the same class will be more clustered and the distances of
the instances in different classes will be larger. Since these
distances are calculated from all the training instances using a
K-fold cross validation manner, a good distribution of all the
training instances in the decision space can be obtained if the
distances are optimised, which can be seen from Fig. 7. With a
clear boundary and more clustered instances in each class, the
built classifiers could have higher generalisation performance
to correctly classify more unseen instances.

Fig. 7. The original distribution (left) and a good distribution (right) of all
the instances in the decision space by maximising the distance measure for a
three-class classification problem.

C. DTGPN for FSIC

The overall algorithm of DTGPN for image classification
is described in Algorithm 2. DTGPN searches for the best
individual of two trees (i.e., Best Ind) via the evolutionary
process using a small number of training instances. After the
evolutionary process, the best individual is tested on the test
set. In the test process, the training set and the test set are
transformed by the two trees of Best Ind. The transformed
training and test sets are normalised. The small training set is
used to train linear SVM to obtain classifier(s) and the trained
classifier(s) are used to classify the instances in the test set.
The classification accuracy of the test set is calculated.

Algorithm 2: DTGPN for FSIC
Input : Dtrain: a small number of training

instances; Dtest: the test set.
Output : The classification accuracy of the test set

// Evolutionary learning procedure
1 P0 ← Initialise the population, where each individual

has two trees;
2 g ← 0;
3 while g < G do
4 Evaluate each individual in Pg using Algorithm 1;
5 Update Best Ind;
6 Ig ← the best individuals selected from Pg using

elitism;
7 Sg ← individuals selected from Pg using

tournament selection;
8 Og ← offspring generated from Sg using the

same-index-crossover and mutation operators;
9 Pg+1 ← Og ∪ Ig;

10 g ← g + 1;
11 end
12 Best Ind is obtained;
// Classification procedure

13 Dtr
train, Dtr

test ← transformed Dtrain and Dtest with a
set of features described by Best Ind;

14 Dnorm
train ← normalised Dtr

train using the min-max
normalisation method;

15 Dnorm
test ← normalised Dtr

test based on Dtr
train;

16 Train SVM classifiers using Dnorm
train ;

17 Use the trained SVM classifiers to classify Dnorm
test and

obtain the classification accuracy.
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TABLE I
SUMMARY OF THE DATASETS

Data Sets #Class Image
Size

Train Set
(3-shot)

Test Set
(3-shot)

Train Set
(5-shot)

Test Set
(5-shot)

JAFFE 7 128×128 21 192 35 178
FEI 2 130×180 6 194 10 190
ORL 40 112×92 120 280 200 200
Faces 72 90×100 216 1,224 360 1,080
YaleB 38 90×100 114 2,310 190 2,234
COIL 20 100×100 60 1,380 100 1,340
DSLR 31 100×100 93 405 155 343
KTH 10 100×100 30 780 50 760
Outex 24 128×128 72 4,248 120 4,200

IV. EXPERIMENT DESIGN

This section designs the experiments, including the bench-
mark datasets, baseline methods and parameter settings.

A. Benchmark Datasets

To show the effectiveness of the proposed DTGPN approach
on various image classification tasks, nine different image
datasets of varying difficulties are employed as benchmark
datasets. These datasets are JAFFE [40], FEI [41], ORL [42],
Faces [43], YaleB [44], COIL [45], DSLR [46], KTH [47], and
Outex [48]. These datasets represent a wide variety of image
classification tasks, i.e., facial expression classification (JAFFE
and FEI), face recognition (ORL, Faces, and YaleB), object
classification (COIL and DSLR), and texture classification
(KTH and Outex). These tasks with various types of images,
different numbers of classes and various image sizes can
comprehensively demonstrate the effectiveness of the proposed
DTGPN approach to FSIC.

In the experiments, few-class (2 and 7 classes) and many-
class (including 72, 40, 38, and 24 classes) 3-shot and 5-shot
image classification tasks are investigated. The training set has
three or five images per class. In total, there are 18 benchmark
datasets, i.e., nine datasets on two different scenarios. In these
datasets, 3 or 5 images are randomly selected from each class
to form the training sets and the remaining images form the test
sets. The detailed information of these datasets is summarised
in Table I. It shows that these datasets have different numbers
of classes, image sizes, and numbers of instances for testing.
Example images of these datasets are shown in Fig. 8.

Since this paper aims to solve FSIC without the use of data
augmentation or transfer learning, only the training set of the
dataset is employed for model training and feature learning.
Furthermore, this paper is to investigate FSIC with different
types of images and different numbers of classes. Based on
such considerations, the current nine datasets with different
numbers of classes, including many-class FSIC tasks [49], are
employed in the experiments.

B. Baseline Methods

A large number of baseline methods are used for compar-
isons. These baseline methods consist of three main groups.

The first group has one baseline GP method and 12 non-
GP-based methods. The baseline GP method is the FLGP

FEI                  JAFFE    

ORL Faces

YaleB COIL

KTH Outex

DSLR

Fig. 8. Example images from the nine image classification datasets.

method in [26]. The 12 non-GP-based methods are SVM,
random forest (RF) [32], k-nearest neighbour (KNN) [20],
sparse representation-based classification (SRC) [50], linear
discriminant analysis (LDA) [51], SIFT [36], DIF [35], His-
togram, HOG [37], LBP [38], LeNet [52] and a five-layer CNN
(CNN-5) [31]. The SVM, RF, KNN, SRC, and LDA methods
use the raw pixel values for classification. The SIFT, DIF,
Histogram, HOG, and LBP methods use the corresponding
features as inputs of SVM to perform classification. The LeNet
and CNN-5 methods have a smaller number of parameters
than very deep CNNs since only a small number of training
instances are used. The aim of the experiments is to investigate
whether DTGPN can achieve better performance than these
commonly used image classification methods.

The second group has the same 12 non-GP-based methods
in the first group with using data augmentation. The images
in the training set are rotated, flipped, or blurred to generate
new images [3]. The size of the training set is enlarged
twice for feature learning and model training. The aim of
the experiments is to investigate whether DTGPN without
data augmentation can achieve better performance than these
methods with data augmentation, which is a simple way to
address FSIC.

The third group includes five well-known FSIC methods for
comparisons. They are Convolutional Siamese Networks [10],
Convolutional Siamese Networks with triple loss (Triple Net-
works for short) [53], Prototypical Networks [11], Matching
Networks [54], and Model-Agnostic Meta-Learning (MAML)
[55]. The implementations of these five methods are based
on Pytorch 1. We have conducted parameter tuning for Con-
volutional Siamese Networks and Triple Networks regarding
the number of epochs (i.e., 20, 50, 100, 200), the output
dimension (i.e., 1, 32, 64, 256, 4096), and weight initialisation

1The codes for Siamese Networks and Triple Networks are downloaded
from https://github.com/adambielski/siamese-triplet. The codes for the other
three methods are downloaded from https://github.com/oscarknagg/few-shot

https://github.com/adambielski/siamese-triplet
https://github.com/oscarknagg/few-shot
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(with and without the one recommended in [10]). The detailed
analysis is presented in the supplementary materials due to the
page limit. The best parameters (i.e., 50 epochs, 64-dimension
outputs and the weight initialisation method in [10]) are used
in the experiments. For the other parameters, we kept the same
as the repositories. In the other three networks, we set the
number of evaluation episodes to 10, the number of epochs
to 40, and the number of episodes each epoch to 100 after
empirical search. It is noted that we did not do parameter
tuning for the proposed approach, so the comparisons are
expected to be fair or at least not to be biased to the proposed
approach (making entirely fair comparisons is not easy since
these methods are based on NNs, while the proposed approach
is an EC method). In these NN methods, we use the training
set for learning (including meta-learning), and the test set for
calculating classification accuracy. We also used an external
large dataset to train the model and use the training set to
fine-tune the model to obtain the performance of the test set.
However, due to the page limit and the high computational
cost, we only compared these methods with the proposed
DTGPN approach on several datasets in the supplementary
materials. The aim of the experiments is to investigate whether
the proposed DTGPN approach can achieves better results than
well-known FSIC methods.

C. Parameter Settings
The parameter settings for the four GP-based methods

follow the commonly used settings in the GP community [26]
[56]. The population size is 100 and the maximal number of
generations is 50. The crossover, mutation and elitism rates
are 0.8, 0.19 and 0.01, respectively. Tournament selection
with size five is employed to select individuals for crossover
and mutation. The tree depth is between 2-8. It is noted that
the depth of GP trees may be above eight because the type
constraints are more important than the tree depth constraint
when building GP trees. The ramped-half-and-half method is
used for generating the initial population.

The parameters settings for the 12 non-GP-based baseline
methods are based on the commonly used settings. The num-
ber of neighbours is 1 in KNN [20]. SVM uses a commonly
used linear kernel because it has few parameters [25]. The
number of trees is 500 and the maximal tree depth is 100 in
RF [32]. In LeNet and CNN-5, the batch size is set to 20 and
the number of epochs is set to 100 [32].

The DEAP (Distributed Evolutionary Algorithm in Python)
[57] package is used to implement all the GP-based meth-
ods. The scikit-learn [58] package is used to implement the
classification algorithms and the Keras [59] package is used
to implement the CNNs. The experiments of each algorithm
have been executed 30 independent times and the results of
the 30 runs are reported. All the algorithms use the training
sets to learn features or train classifiers, and the test sets have
never been used in these processes.

V. RESULTS AND DISCUSSIONS

This section discusses and analyses the results obtained by
DTGPN and the baseline methods on the nine datasets under
the 3-shot and 5-shot image classification scenarios.

A. Comparisons with Baseline Methods

The mean test accuracy (%) and the standard deviation
values of the 30 runs of the DTGPN approach and the
baseline methods are listed in Table II. To show the significant
improvement of the performance, Wilcoxon rank-sum test with
a 5% significance level is employed to compare the DTGPN
approach with a baseline method. In Table II, the “+”, “−” and
“=” symbols denote that DTGPN achieves significantly better,
worse or similar performance than/to the compared method.
The overall significance results are summarised at the final
row of each block of Table II.

Compared with the five methods using raw pixels, i.e.,
SVM, RF, KNN, SRC, and LDA, it can be found that DTGPN
achieves significantly better results in 88 comparisons out of
the total 90 comparisons. Importantly, DTGPN achieves sig-
nificantly better results than these methods on all the datasets
of 5-shot image classification. From Table II, we can find that
these five methods using raw pixels achieve very low accuracy
on most datasets, particularly the FEI, Faces, YaleB, COIL,
DSLR, KTH, and Outex datasets. Compared with these meth-
ods, the proposed DTGPN approach significantly improves the
classification performance by automatically learning effective
features for image classification.

Compared with the methods using pre-extracted features,
i.e., SIFT, DIF, Histogram, HOG, and LBP, the proposed
DTGPN approach achieves significantly better results in all
the comparisons under the 3-shot and 5-shot scenarios. The
DTGPN approach significantly improves the classification
performance on the JAFFE, FEI, YaleB, COIL, DSLR, KTH,
and Outex datasets. It can be found that the performance
of the methods using these pre-extracted features vary with
the datasets. Compared with these methods, DTGPN can
learn features that are more effective than these pre-extracted
features from a very small number of training instances to
achieve better classification performance.

Compared with the two CNN methods, i.e., LeNet and
CNN-5, the proposed DTGPN approach achieves significantly
better or similar results in all the comparisons. Given a
dataset having images with a size of 100 × 100, LeNet has
3, 316, 696 + (85 × C) trainable parameters and CNN-5 has
1, 992, 160+(129×C) trainable parameters, where C denotes
the number of classes. Thus, LeNet and CNN-5 cannot achieve
good performance on these FSIC datasets because of the lack
of sufficient training images to effectively train the models
with such a large number of parameters. Compared with
these two methods, the DTGPN approach only needs to train
SVM classifiers with f + 1 (when C = 2) or (f + 1) × C
trainable parameters (when C > 2), where f denotes the
number of learned features. Typically, f is significantly smaller
than 5,000 (the number of features learned by DTGPN will
be analysed in Section VI-C). Compared with these two
CNN methods, the number of the trainable parameters of the
DTGPN-based image classification approach is significantly
smaller. Therefore, DTGPN can achieve significantly better
performance than these two CNN methods when the number
of training instances is very small.

Compared with FLGP, the proposed DTGPN approach
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TABLE II
TEST ACCURACY (%) OF DTGPN AND THE BASELINE METHODS ON THE 3-SHOT AND 5-SHOT IMAGE CLASSIFICATION TASKS. THE “+”, “−” AND “=”

SYMBOLS DENOTES THAT DTGPN ACHIEVES SIGNIFICANTLY BETTER, WORSE OR SIMILAR PERFORMANCE THAN/TO THE COMPARED METHOD

Method Mean±St.dev Mean±St.dev Mean±St.dev Mean±St.dev Mean±St.dev Mean±St.dev
JAFFE (3-shot) JAFFE (5-shot) FEI (3-shot) FEI (5-shot) ORL (3-shot) ORL (5-shot)

SVM 31.09±0.28 – 42.21±0.25 + 51.03±0.00 + 52.63±0.00 + 91.07±0.00 + 94.50±0.00 +
RF 21.60±1.36 + 36.84±1.25 + 53.38±1.23 + 54.72±1.49 + 89.29±0.78 + 93.62±1.16 +
KNN 14.58±0.00 + 18.54±0.00 + 48.97±0.00 + 47.89±0.00 + 66.43±0.00 + 83.50±0.00 +
SRC 32.29±0.00 – 37.64±0.00 + 52.58±0.00 + 50.00±0.00 + 87.86±0.00 + 91.00±0.00 +
LDA 14.58±0.00 + 29.21±0.00 + 52.06±0.00 + 48.95±0.00 + 89.29±0.00 + 93.50±0.00 +
SIFT 20.31±0.00 + 28.09±0.00 + 52.58±0.00 + 52.11±0.00 + 93.21±0.00 + 93.50±0.00 +
DIF 18.75±0.00 + 15.73±0.00 + 52.04±0.09 + 50.53±0.00 + 63.21±0.00 + 69.13±0.22 +
Histogram 17.00±0.77 + 19.36±1.73 + 51.55±0.00 + 47.37±0.00 + 80.92±0.73 + 83.20±0.99 +
HOG 16.20±0.16 + 31.31±0.39 + 56.41±0.71 + 46.09±0.36 + 61.29±0.26 + 66.98±0.09 +
LBP 16.39±1.54 + 21.91±3.60 + 46.17±0.26 + 55.26±0.00 + 83.15±1.56 + 83.55±1.11 +
LeNet 26.27±3.54 = 41.48±1.48 + 52.65±1.81 + 57.00±3.44 + 75.42±3.30 + 82.68±3.44 +
CNN-5 25.71±2.07 = 39.83±1.35 + 50.52±1.26 + 51.46±1.39 + 86.93±1.78 + 92.77±1.54 +
FLGP 23.35±7.18 = 44.49±9.67 + 69.36±12.29 + 81.53±9.28 = 96.02±0.60 + 98.37±0.59 +
DTGPN 25.16±6.96 53.52±3.49 84.85±6.97 81.16±4.37 96.76±0.32 99.73±0.29
Overall 8+, 3=, 2– 13+ 13+ 12+, 1= 13+ 13+

Faces (3-shot) Faces (5-shot) YaleB (3-shot) YaleB (5-shot) COIL (3-shot) COIL (5-shot)
SVM 64.18±0.05 + 73.09±0.06 + 44.11±0.08 + 82.41±0.03 + 78.26±0.01 + 80.97±0.00 +
RF 74.58±0.48 + 84.63±0.43 + 42.53±0.41 + 84.10±0.37 + 84.44±0.52 + 91.06±0.38 +
KNN 40.85±0.00 + 52.87±0.00 + 8.83±0.00 + 29.45±0.00 + 59.57±0.00 + 63.36±0.00 +
SRC 59.64±0.00 + 64.63±0.00 + 63.07±0.00 + 92.03±0.00 + 73.48±0.00 + 77.61±0.00 +
LDA 75.25±0.00 + 80.46±0.00 + 46.10±0.00 + 82.68±0.00 + 75.29±0.00 + 80.67±0.00 +
SIFT 82.52±0.00 + 89.72±0.00 + 27.10±0.00 + 59.83±0.01 + 79.42±0.00 + 84.25±0.00 +
DIF 42.40±0.00 + 51.20±0.00 + 8.40±0.00 + 14.33±0.00 + 67.17±0.00 + 73.43±0.00 +
Histogram 47.95±4.55 + 53.07±7.92 + 4.12±0.32 + 5.84±0.59 + 60.72±1.74 + 67.60±2.30 +
HOG 20.15±0.14 + 21.53±0.07 + 6.43±0.04 + 8.54±0.04 + 60.98±0.08 + 57.65±0.05 +
LBP 81.19±0.79 + 91.97±0.52 + 22.82±0.52 + 39.78±1.68 + 73.38±1.76 + 81.50±1.10 +
LeNet 60.36±3.35 + 73.27±2.07 + 32.10±2.78 + 69.67±3.92 + 78.87±3.05 + 85.77±2.98 +
CNN-5 64.31±2.09 + 76.16±1.73 + 41.81±1.19 + 77.51±2.19 + 79.74±1.73 + 85.58±2.08 +
FLGP 92.65±1.11 + 96.57±0.77 + 69.92±3.06 + 95.45±2.90 + 84.34±1.28 + 92.98±1.68 +
DTGPN 93.77±1.03 96.97±0.89 75.94±2.97 97.84±0.92 87.97±1.43 95.75±1.16
Overall 13+ 13+ 13+ 13+ 13+ 13+

DSLR (3-shot) DSLR (5-shot) KTH (3-shot) KTH (5-shot) Outex (3-shot) Outex (5-shot)
SVM 22.52±0.39 + 28.34±0.29 + 15.24±0.82 + 19.55±0.44 + 5.41±0.12 + 7.25±0.09 +
RF 34.84±1.14 + 41.83±0.99 + 32.82±1.58 + 38.27±1.54 + 31.79±0.38 + 35.30±0.39 +
KNN 13.83±0.00 + 18.66±0.00 + 21.41±0.00 + 18.55±0.00 + 27.45±0.00 + 26.10±0.00 +
SRC 18.27±0.00 + 24.78±0.00 + 19.62±0.00 + 22.50±0.00 + 7.72±0.00 + 7.98±0.00 +
LDA 21.23±0.00 + 25.66±0.00 + 30.26±0.00 + 32.37±0.00 + 32.72±0.00 + 34.45±0.00 +
SIFT 38.52±0.00 + 46.65±0.00 + 39.36±0.00 + 45.53±0.00 + 22.89±0.01 + 22.80±0.01 +
DIF 27.65±0.00 + 28.28±0.00 + 39.10±0.02 + 40.26±0.00 + 23.53±0.02 + 23.81±0.01 +
Histogram 12.22±1.36 + 15.68±1.19 + 39.19±0.73 + 34.57±1.45 + 42.54±7.57 + 47.96±8.13 +
HOG 17.04±0.00 + 17.79±0.05 + 20.13±0.00 + 20.47±0.09 + 8.52±0.00 + 8.54±0.01 +
LBP 25.88±0.88 + 34.10±1.01 + 52.72±2.25 + 63.05±3.45 + 64.19±1.31 + 74.03±0.89 +
LeNet 24.26±3.51 + 32.59±3.29 + 32.95±4.89 + 36.82±5.90 + 44.68±7.58 + 51.74±8.00 +
CNN-5 32.78±2.73 + 38.36±3.42 + 37.73±4.12 + 44.28±3.36 + 35.74±3.97 + 44.21±5.51 +
FLGP 50.07±3.48 = 55.77±2.39 = 58.85±3.70 + 69.81±2.14 – 73.50±2.24 = 82.29±0.96 =
DTGPN 50.94±3.24 57.26±2.74 61.57±3.86 68.03±1.47 74.10±1.04 82.12±0.78
Overall 12+, 1= 12+, 1= 13+ 12+, 1– 12+, 1= 12+, 1=

achieves significantly better or similar performance in 17 com-
parisons out of the total 18 comparisons. It can be found that
DTGPN achieves better or similar performance than FLGP on
all the 3-shot image classification tasks. DTGPN significantly
improves the classification performance on the JAFFE (5-
shot), FEI (3-shot), YaleB (3-shot), COIL (3-shot), and COIL
(5-shot) datasets. Compared with FLGP, the DTGPN approach
uses a dual-tree representation and a new fitness function
to learn effective features for FSIC. From the results, it is
clear that the dual-tree representation and the fitness function
significantly improve the classification performance.

B. Comparisons with the Methods with Data Augmentation
The classification results of the baseline methods with data

augmentation and the DTGPN approach are listed in Table

I in the supplementary materials due to the page limit. The
summary of the comparisons in terms of the significance test is
listed in Table IV. Compared with these baseline methods with
the use of data augmentation, the proposed DTGPN approach
achieves significantly better performance in 210 comparisons
out of the total 216 comparisons. Only on JAFFE (3-shot),
DTGPN achieves better performance than KNN, SIFT, DIF,
Histogram, HOG, and LBP, similar performance to RF, and
worse performance than SVM, SRC, LDA, LeNet, and CNN-
5. On the remaining 17 datasets, DTGPN achieves significantly
better performance than any of the baseline methods. The
results show that DTGPN is better than the baseline methods
with data augmentation on these different FSIC datasets.

The results in Table I of the supplementary materials show
that the use of data augmentation can help improve the
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TABLE III
TEST ACCURACY (%) OF POPULAR FSIC METHODS AND DTGPN ON THESE 18 DATASETS. THE “+”, “−” AND “=” SYMBOLS INDICATE DTGPN

ACHIEVES SIGNIFICANTLY BETTER, WORSE OR SIMILAR PERFORMANCE THAN/TO THE COMPARED METHOD

Siamese
Networks

Triplet
Networks

Prototypical
Networks

Matching
Networks

MAML DTGPN

Dataset Mean±St.dev Mean±St.dev Mean±St.dev Mean±St.dev Mean±St.dev Mean±St.dev
JAFFE (3-shot) 18.11±2.77 + 16.60±3.17 + 66.09±1.46 – 66.08±1.22 – 42.70±9.96 – 25.16±6.96
JAFFE (5-shot) 31.50±3.17 + 22.15±4.26 + 65.76±1.13 – 66.29±1.41 – 29.73±7.73 + 53.52±3.49
FEI (3-shot) 55.24±4.15 + 58.35±8.61 + 74.26±2.42 + 74.82±2.66 + 64.84±11.85 + 84.85±6.97
FEI (5-shot) 50.56±4.68 + 54.70±8.09 + 74.48±1.93 + 74.60±3.02 + 67.83±10.93 + 81.16±4.37
ORL (3-shot) 70.10±4.43 + 56.49±5.09 + 63.74±0.48 + 62.54±1.45 + 62.33±0.83 + 96.76±0.32
ORL (5-shot) 74.30±5.85 + 64.97±5.70 + 63.72±0.53 + 62.46±1.08 + 62.56±0.59 + 99.73±0.29
Faces (3-shot) 61.15±2.38 + 52.36±4.60 + 63.28±0.40 + 28.03±4.22 + 61.20±1.17 + 93.77±1.03
Faces (5-shot) 67.81±2.56 + 60.90±4.98 + 63.51±0.50 + 25.61±6.48 + 61.93±0.59 + 96.97±0.89
YaleB (3-shot) 16.28±1.53 + 6.52±0.80 + 63.62±0.51 + 51.65±3.20 + 17.61±12.33 + 75.94±2.97
YaleB (5-shot) 43.19±2.38 + 11.59±2.07 + 63.64±0.47 + 52.14±3.87 + 32.99±17.40+ 97.84±0.92
COIL (3-shot) 72.23±2.19 + 63.13±4.72 + 63.94±0.75 + 64.18±0.66 + 59.69±0.96 + 87.97±1.43
COIL (5-shot) 80.88±1.69 + 69.61±4.14 + 64.03±0.74 + 64.12±0.82 + 60.18±0.75 + 95.75±1.16
DSLR (3-shot) 22.28±2.30 + 19.61±2.55 + 63.78±0.54 – 30.13±5.56 + 56.15±4.29 – 50.94±3.24
DSLR (5-shot) 27.64±2.64 + 28.06±3.97 + 63.74±0.74 – 29.40±5.64 + 55.16±4.63 = 57.26±2.74
KTH (3-shot) 42.62±3.57 + 38.12±3.45 + 64.65±0.92 – 49.69±5.00 + 41.64±1.92 + 61.57±3.86
KTH (5-shot) 48.38±3.05 + 39.93±3.21 + 64.98±0.91 + 64.77±1.09 + 41.45±1.94 + 68.03±1.47
Outex (3-shot) 51.82±3.90 + 53.37±4.47 + 63.99±0.63 + 46.75±3.11 + 42.47±4.88 + 74.10±1.04
Outex (5-shot) 58.63± 5.51 + 58.94±5.77 + 64.17±0.80 + 47.47±3.36 + 50.06±2.45 + 82.12±0.78
Overall 18+ 18+ 13+, 5– 16+, 2– 15+, 1=, 2–

TABLE IV
SUMMARY OF COMPARISONS BETWEEN DTGPN WITH 12 METHODS WITH

DATA AUGMENTATION IN TERMS OF THE SIGNIFICANCE TEST ON THE 18
FSIC DATASETS

JAFFE (3-shot) 6+, 1=, 5– JAFFE (5-shot) 12+
FEI (3-shot) 12+ FEI (5-shot) 12+
ORL (3-shot) 12+ ORL (5-shot) 12+
Faces (3-shot) 12+ Faces (5-shot) 12+
YaleB (3-shot) 12+ YaleB (6-shot) 12+
COIL (3-shot) 12+ COIL (5-shot) 12+
DSLR (3-shot) 12+ DSLR (5-shot) 12+
Outex (3-shot) 12+ Outex (5-shot) 12+

classification performance of these different baseline methods
on some datasets. For example, on the object classification
datasets, i.e., COIL and DSLR, the classification performance
of some methods such as RF and SRC is improved. However,
comparing the results with data augmentation with those in
Table II, it can be found that using data augmentation does not
necessarily improve the classification performance on these
datasets with a small number of training instances. Data
augmentation can only introduce limited information into the
training set so that the classification performance may not
be improved. In some cases, using data augmentation even
decreases the classification performance, which indicates that
data augmentation harms the quality of the training set. This
shows the ineffectiveness of data augmentation in FSIC.

C. Comparisons with State-of-the-art FSIC Methods

Table III lists the classification results obtained by the five
well-known FSIC methods (i.e., Siamese Networks, Triplet
Networks, Prototypical Networks, Matching Networks, and
MAML) on the 18 datasets. The final row of the table
summarises the results of the significance tests. Due to the
page limit, the comparisons with some of these methods using

an external large dataset for model pre-training are discussed
in the supplementary materials.

The results show that DTGPN achieves significantly better
performance in 80 comparisons out of the 90 comparisons.
Specifically, DTGPN achieves significantly better performance
than Siamese Networks and Triplet Networks on all these 18
datasets. Compared with the Prototypical Networks, DTGPN
achieves significantly better performance on 13 datasets and
worse performance on 5 datasets, i.e., the JAFFE (3-shot and
5-shot), DSLR (3-shot and 5-shot), and KTH (3-shot) datasets.
On JAFFE (3-shot and 5-shot), DTGPN achieves worse perfor-
mance than Matching Networks. Similarly, DTGPN achieves
worse performance than MAML on JAFFE (3-shot) and DSLR
(3-shot and 5-shot). Although DTGPN is worse in the above
cases, it significantly improves the classification accuracy on
most of the remaining datasets. For instance, it improves the
accuracy of over 25% on ORL (3-shot and 5-shot), over 32%
on Faces (3-shot), over 15% on COIL (3-shot and 5-shot),
and over 10% on FEI (3-shot) and Outex (3-shot and 5-shot).
Overall, the results suggest that the DTGPN approach achieves
significantly better performance than these five well-known
few-shot learning methods in most comparisons.

D. Summary

To sum up, the proposed DTGPN approach achieves signif-
icantly better or similar performance in almost all the com-
parisons. The results show that DTGPN achieves significantly
better performance than the baseline GP method (i.e. FLGP),
which indicates the effectiveness of the new representation
and the new fitness function. The results show that DTGPN
achieves significantly better performance than 12 non-GP-
based baseline methods with and without data augmentation
on these 18 FSIC datasets, including different types of images
and different numbers of classes. Compared with five popular
FSIC methods (i.e., Siamese Networks, Triplet Networks,
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TABLE V
TEST ACCURACY (%) OF DTGPN, GPN (SINGLE-TREE GP WITH THE
NEW FITNESS FUNCTION) AND DTGP (DUAL-TREE GP WITHOUT THE

NEW FITNESS FUNCTION) ON THESE 18 FSIC DATASETS

GPN DTGP DTGPN
Dataset Mean±St.dev Mean±St.dev Mean±St.dev
JAFFE (3-shot) 21.60±4.53 = 26.25±7.60 = 25.16±6.96
JAFFE (5-shot) 53.45±3.85 = 50.58±4.86 + 53.52±3.49
FEI (3-shot) 84.17±12.08 = 63.71±9.13 + 84.85±6.97
FEI (5-shot) 80.47±9.01 = 81.37±8.43 = 81.16±4.37
ORL (3-shot) 96.44±0.51 + 96.06±0.78 + 96.76±0.32
ORL (5-shot) 99.72±0.28 = 98.75±0.50 + 99.73±0.29
Faces (3-shot) 93.32±0.78 + 92.82±0.95 + 93.77±1.03
Faces (5-shot) 96.40±0.96 + 97.29±0.71 = 96.97±0.89
YaleB (3-shot) 70.89±2.52 + 75.69±3.10 = 75.94±2.97
YaleB (5-shot) 96.98±1.07 + 96.96±1.05 + 97.84±0.92
COIL (3-shot) 86.54±1.70 + 84.65±2.57 + 87.97±1.43
COIL (5-shot) 95.37±1.37 = 93.54±1.96 + 95.75±1.16
DSLR (3-shot) 47.96±2.65 + 50.78±2.39 = 50.94±3.24
DSLR (5-shot) 56.50±1.44 = 57.60±2.35 = 57.26±2.74
KTH (3-shot) 60.24±3.86 = 56.92±3.84 + 61.57±3.86
KTH (5-shot) 69.47±2.66 – 67.39±2.96 = 68.03±1.47
Outex (3-shot) 73.71±1.28 = 73.90±2.12 = 74.10±1.04
Outex (5-shot) 82.99±0.98 – 82.46±1.10 = 82.12±0.78
Overall 7+, 9=, 2– 9+, 9=

Prototypical Networks, Matching Networks, and MAML), the
proposed approach achieves significantly better performance
in most comparisons. The results show the effectiveness of
DTGPN on these FSIC tasks. Overall, DTGPN can be easily
applied to different FSIC tasks with different numbers of
classes to achieve good performance.

VI. FURTHER ANALYSIS

This section further analyses the performance of DTGPN
and its new components, i.e., the dual-tree representation and
the fitness function. Besides, the number of learned features
and the example trees evolved by DTGPN are analysed. Due
to the page limit, the analysis of the parameter sensitivity,
convergence behaviour, running and testing time is presented
in the supplementary materials.

A. Effectiveness of the Dual-Tree Representation

The effectiveness of the dual-tree representation in DTGPN
is analysed by comparing its performance with a single-tree
GP approach with the same fitness function (i.e., GPN for
short). The test results of DTGPN and GPN are listed in
Table V. The “+”, “−” and “=” symbols indicate that DTGPN
achieves significantly better, worse or similar performance
than/to GPN. The results show that DTGPN achieves signif-
icantly better results in seven comparisons than and similar
results in nine comparisons to GPN. It shows that the GP
method with a dual-tree representation can significantly im-
prove the classification performance. Compared with a single-
tree representation, a dual-tree representation can improve the
search ability of GP to finding better solutions, which is
also found from the analysis of the convergence behaviour
in the supplementary materials. The analysis confirms the
effectiveness of the dual-tree representation in DTGPN.

Fig. 9. Number of features learned by FLGP, GPN, DTGP, and DTGPN on
the nine datasets of 3-shot image classification.

Fig. 10. Number of features learned by FLGP, GPN, DTGP, and DTGPN on
the nine datasets of 5-shot image classification.

B. Effectiveness of The New Fitness Function

The effectiveness of the new fitness function is analysed by
comparing it with the fitness function of using only the classi-
fication accuracy in DTGPN. The compared method is termed
as DTGP. The fitness function of the classification accuracy
is selected because it is straightforward and commonly used
[25, 26]. Table V lists the test results of DTGPN and DTGP.
Compared with DTGP, DTGPN achieves significantly better
or similar results in all the comparisons. The fitness function
in DTGPN optimises not only the classification accuracy but
also the distances between the training instances to the class
centroids. It can provide more accurate information of the
goodness of the learned features and the SVM classifiers
trained using these features. From the results, it is clear that the
fitness function can effectively improve the classification per-
formance on the test set (i.e., the generalisation performance).
This analysis confirms the effectiveness of the fitness function
in the DTGPN approach.

C. Number of the Learned Features

The number of the features learned by DTGPN is compared
with that obtained by FLGP, GPN and DTGPN on 3-shot
image classification tasks in Fig. 9 and 5-shot image clas-
sification tasks in Fig. 10. The feature number in these two
figures indicates the average value of the 30 runs. From these
two figures, it can be found that the GP methods with a dual-
tree representation (i.e., DTGP and DTGPN) learn a larger
number of features than the GP methods with a single-tree
representation (i.e., GPN and FLGP) using the same fitness
function. Having one more tree, more possible combinations
of the features can be learned by DTGP and DTGPN. Further-
more, a large number of features may cover more variations of
the representing images, which can improve the generalisation
performance of the classification system based on them. Thus,
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Fig. 11. Example trees evolved by DTGPN on the JAFFE (5-shot) dataset.

DTGPN achieves better classification performance than GPN
in most comparisons. Figures 9 and 10 also show that the GP
methods with the proposed fitness function (i.e., GPN) learn
a smaller number of features than the GP methods with the
fitness function of the classification accuracy (i.e., FLGP) on
most of the datasets, particularly on 3-shot image classification
tasks. This suggests that the proposed fitness function can lead
to learning a small number of features when the number of
training instances is small. The proposed fitness function has a
component of a distance measure based on the decision space.
The distance measure may prefer the SVM classifiers with
fewer parameters, indicating that a small number of features
are needed. Comparing DTGPN with the other three GP meth-
ods, it is clear that DTGPN learns an appropriate number of
features from different datasets to achieve good generalisation
performance by having the dual-tree representation and the
fitness function. On a few datasets, such as Faces (5-shot) and
EYALE (5-shot), DTGPN learns a large number of features
and achieves the best classification performance. On most of
the other datasets, the number of features learned by DTGPN
is not the biggest one or the smallest one. This shows that
DTGPN can automatically balance the training accuracy and
the classifier complexity by learning a reasonable number of
features, but this needs to be further investigated in the future.

D. Example Trees Evolved by DTGPN

1) Example Trees on JAFFE (5-shot): An example in-
dividual of two trees evolved by DTGPN is visualised in
Fig. 11. This example trees achieve 58.43% accuracy on the
JAFFE (5-shot) dataset. The two trees detect rectangle regions
from the face images and extract 128 SIFT features from
the detected regions, respectively. The left tree can achieve
53.93% accuracy on this dataset using 128 SIFT features and
the right tree can achieve 46.63% accuracy on this dataset.
A combination of the 256 SIFT features extracted by these
two trees achieves better classification performance. From the
face images in Fig. 11, it can be found that the two detected
regions contain discriminative information of the images with
different facial expressions. From Table II, it can be found that
the SIFT features are more effective than the LBP, DIF and
Histogram features for classifying this dataset. Therefore, it is
reasonable that the example trees have the L SIFT functions
to extract features from these two detected regions.

FeaCon2

L_DIF

Region_S

Image 36 52 30

G_DIF

Image

L_LBP

Region_R

Image 7 54 38 36

Fig. 12. Example trees evolved by DTGPN on the KTH (3-shot) dataset.

Fig. 13. The frequency (normalised to 100%) of the feature extraction
functions in the trees evolved by DTGPN on the 18 datasets.

2) Example Trees on KTH (3-shot): Two example trees
evolved by DTGPN on KTH (3-shot) are shown in Fig. 12. The
left tree extracts DIF features from a detected square region
and the whole image. These features can achieve 42.56% test
accuracy on this dataset. The right tree extracts LBP features
from a detected rectangle region, which achieves 45.26% test
accuracy. A combination of these features achieves 61.03%
test accuracy, which is better than many baseline methods.
The analysis show that DTGPN can find good combination of
features to achieve high classification performance.

3) Function Frequency Analysis of the GP Trees: The
frequency (normalised to 100%) of the feature extraction
functions in the trees evolved by DTGPN of the 30 runs on
the 18 datasets are shown in Fig. 13. It can be found that the
frequencies of these functions vary with datasets. On JAFFE
(3-shot) and FEI (3-shot), the L HOG function (extracting
local HOG features) is frequently used. On JAFFE (5-shot)
and YaleB (3-shot), the L SIFT function (extracting local
SIFT features) is frequently used. These functions extract
different image features to achieve various performance on
these datasets. DTGPN can evolve trees having these functions
to extract effective features to achieve good performance when
the number of training instance is very small. By analysing
these frequencies, it is clear to understand what features, e.g.,
global features, local features, LBP features, HOG features,
and SIFT features, are effective for which dataset.

To sum up, the analysis verifies the effectiveness of the new
components, i.e., the dual-tree representation and the fitness
function, in the proposed DTGPN approach. The example trees
evolved by DTGPN show potentially high interpretability by
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providing insights into what and why the features are effective
for an image classification task.

VII. CONCLUSIONS

The goal of this paper was to develop a new GP-based
approach to FSIC. This goal was achieved by proposing the
DTGPN approach with a dual-tree representation and a fitness
function and examining its performance on different types
of FSIC tasks with various numbers of classes. A dual-tree
representation allows DTGPN to better search for the solution
space to find solutions that extract rich features for effective
classification. To improve the generalisation performance, a
fitness function was proposed to optimise the classification
accuracy and the distances of the training instances to the
class centroids. The performance of DTGPN was examined on
nine datasets of varying difficulties under both the 3-shot and
5-shot scenarios. The results showed that DTGPN achieved
significantly better classification performance than the baseline
methods, the baseline methods with data augmentation, and
the five well-known few-shot learning methods. The results
showed that DTGPN is an effective approach to few-shot
image classification.

With the new designs, the DTGPN approach was able
to achieve good classification performance by automatically
learning features and training SVM classifiers using a very
small number of training instances. Further analysis showed
that DTGPN with a dual-tree representation had better search
ability and learned a relatively larger number of features
to achieve better classification performance than that with a
single-tree representation. The analysis also showed that the
proposed fitness function improved the generalisation perfor-
mance of DTGPN. The analysis on the example trees evolved
by DTGPN showed the potentially high interpretability.

This paper is the first work to comprehensively investigate
the effectiveness of GP for FSIC without the use of data
augmentation and transfer learning. The overall process of the
proposed approach follows a standard learning and classifi-
cation process, which is easy to understand. However, it is
different from most existing FSIC algorithms that are mainly
based on NNs or use NNs as the backbone. This makes
it hard to verify the performance of the proposed approach
on well-known benchmark datasets such as Omniglot and
miniImageNet and compare it with other FSIC algorithms. In
the future, we will develop new GP approaches and apply
them to the well-known FSIC benchmark datasets. Secondly,
the region detection operators in the proposed approach are
not position-invariant. In the future, we will also develop new
translationally invariant region detection operators in GP for
feature extraction and learning.
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