
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, VOL.XX, NO.XX, MONTH 20XX 1

Multi-View Feature Construction Using Genetic
Programming for Rolling Bearing Fault Diagnosis

Bo Peng, Ying Bi, Bing Xue, Mengjie Zhang, and Shuting Wan

Abstract—Rolling bearing fault diagnosis is an important
task in mechanical engineering. Existing methods have several
limitations, such as requiring domain knowledge and a large
number of training samples. To address these limitations, this
paper proposes a new diagnosis approach, i.e., multi-view feature
construction based on genetic programming with the idea of en-
semble learning (MFCGPE), to automatically construct high-level
features from multiple views and build an effective ensemble for
identifying different fault types using a small number of training
samples. The MFCGPE approach uses a new program structure
to automatically construct a flexible number of features from
every single view. A new fitness function based on accuracy and
distance is developed in MFCGPE to improve the discriminability
of the constructed features. To further improve the generalization
performance, an ensemble of classifiers based on k-nearest
neighbor is created by using the constructed features from every
single view. Three bearing datasets and 19 competitive methods
are used to validate the effectiveness of the new approach. The
results show that MFCGPE achieves higher diagnostic accuracy
than all the compared methods on the three datasets with a small
number of training samples.

Index Terms—Genetic Programming, Feature Construction,
Limited Training Data, Fault Diagnosis, Rolling Bearing

I. INTRODUCTION

Rolling bearings are important supporting equipment and
have been used in all kinds of rotating machinery, such as
electric motors, turbine generators, and high-speed trains [1].
The performance of rolling bearings can be affected by the
high temperature, high pressure, and alternating load during
the equipment operation [2]. The rolling bearings are often
inevitably damaged as the running time increases [2]. The
damage of rolling bearings will lead to mechanical equipment
failures and the percentage of failures caused by rolling bear-
ing damage reaches nearly 30% [3]. Therefore, it is important
to identify the faults of rolling bearing to monitor bearing
status, ensure machinery safety, reduce economic losses, and
avoid casualties.

In recent years, many methods have been developed for
rolling bearing fault diagnosis. Because the vibration signals
are easy to collect and often contain information of the running
states, the studies on using vibration signals for fault diagnosis
have gained much attention. The collected vibration signals
often have background noise or information loss. A variety
of signal processing methods, such as wavelet transform [4],
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empirical mode decomposition [5], fast spectral kurtosis [6],
maximum correlated kurtosis deconvolution [7], and varia-
tional mode decomposition [8], have been used to suppress
the interference of noise and harmonics and strengthen signal
characteristics. Experts have conducted the spectrum analysis
on the processed signals and recognized the fault characteristic
frequency for fault diagnosis [9]. However, these methods do
not provide satisfactory results and require extensive domain
expertise, which is time-consuming and expensive.

To automatically identify faults, methods based on machine
learning have been developed for rolling bearing feature
analysis and fault diagnosis. These methods extract various
types of features from the vibration signals and use traditional
classification algorithms to perform fault diagnosis [10]. The
commonly used features include simple statistical features
of time-domain and frequency-domain, and the non-linear
evaluation indicators, such as fractal dimension [11], Lya-
punov exponent [12], and entropy-based features [13], [14],
[15]. Typically, a large number of features are extracted to
describe the vibration signal and these features may contain
redundant or irrelevant features, which may reduce the fault
diagnosis accuracy. Therefore, feature selection methods, such
as max-relevance and min-redundancy [16], ReliefF [17],
Laplacian score [18], principal component analysis [19], local
discriminant analysis [20], and margin fisher analysis [21],
have been employed to select a subset of important features
for effective fault diagnosis. To further improve the fault
diagnosis performance, different classification methods have
been explored for different tasks, including k-nearest neighbor
(KNN) [22], artificial neural network (ANN) [23], extreme
learning machine (ELM) [24], and support vector machine
(SVM) [25]. However, these methods typically contain several
steps of signal processing, feature design, feature selection,
and classifier learning. These steps need to be appropriately
connected to achieve accurate fault diagnosis. In addition,
most of these steps require domain expertise, which causes
the diagnosis method to be effective only on a specific fault
diagnosis task and unable to be generalized to other even
similar tasks.

Deep learning is an advanced machine learning approach
that has been applied to fault diagnosis [26], [27]. Most deep
learning methods are based on neural networks (NNs). Dif-
ferent types of neural networks, such as deep belief networks,
sparse autoencoders, and convolutional neural networks, have
also been developed for effective fault diagnosis [28], [29],
[30]. These methods can automatically learn features from
the vibration signals and train classifiers for effective fault
diagnosis. However, the NN-based methods often use a large



IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, VOL.XX, NO.XX, MONTH 20XX 2

number of training samples to build models/classifiers for fault
diagnosis. In real-world scenarios, the training samples are
often difficult to obtain and require extensive manual effort
to label. Furthermore, designing an effective architecture for
the NN model typically requires rich expertise in the problem
and NN domains. Therefore, it is necessary to develop a
new intelligent fault diagnosis method that can achieve good
performance using a small number of training samples.

Typically, the feature quality is important for effective
rolling bearing fault diagnosis. Traditional methods use many
ways, such as signal processing, feature selection, and feature
learning, to improve the quality of the extracted features
[15], [21], [25]. Feature construction is an effective way to
generate new informative and high-level features from the
original low-level features [31]. As shown in existing work
[11], [12], [13], [14], [15], the features of vibration signals
can be extracted from multiple views and each view repre-
sents different characteristics. However, feature construction,
particularly constructing features from multiple views, which
can create informative features to improve the fault diagnosis,
has not been extensively explored in this field.

Evolutionary computation (EC) methods ordinarily do not
use extensive domain knowledge to find solutions and have
been successfully applied to many difficult problems [32],
[33], [34]. Genetic programming (GP) is an EC technique
that has been widely used as one of the most popular feature
construction methods [31], [35]. Unlike other EC methods,
which use a fixed-length representation, GP has a variable-
length tree-based representation, enabling it to automatically
construct high-level features from low-level features in a
more flexible way [35]. For feature construction, GP typically
evolves models that consist of a set of operators (such as
+, − and ×) and the original features. The original features
are operated by these operators and new features are then
generated. The tree-based solutions of GP potentially have
high interpretability to provide insights into what features are
important for construction and why the constructed features
are effective. Owing to these advantages, many GP methods
have been developed to feature construction in various prob-
lems and achieved promising results [36], [37], [38].

However, existing GP methods need several improvements
to construct effective features for fault diagnosis using a small
number of training samples. First, the features extracted from
the vibration signals can be multiple views, such as time-
domain view and the frequency-domain view [39]. Each view
represents different characteristics of the data. Existing meth-
ods often simply concatenate all the features from different
views, which may not be effective. GP has seldom been
developed for constructing high-level features from different
views (i.e., multi-view feature construction). Second, exist-
ing fitness measures of GP for feature construction often
use classification accuracy, which may cause the overfitting
issue, particularly when the number of training samples is
small. Third, the generalization performance of the features
constructed by GP can be further improved by constructing
ensembles of classifiers for classification. However, this has
seldom been explored. Therefore, this paper develops a new
GP approach to address these limitations.

The goal of this paper is to propose a new intelligent ap-
proach, i.e., multi-view feature construction based on GP with
the idea of ensemble learning (hereafter called MFCGPE),
to rolling bearing fault diagnosis using a small number of
training samples. The proposed approach is able to construct
a flexible number of high-level features from every single view
and build an effective ensemble using the constructed multi-
view features to achieve high generalization performance when
the number of training samples is small. The performance of
MFCGPE will be tested on three datasets of varying difficulty
and compared with 19 competitive methods. Further analysis
will be conducted to show the effectiveness of the constructed
features and the ensemble.

The main contributions of this paper are summarized in the
following four aspects.
1) A new program structure is developed in MFCGPE to allow

it to construct high-level features from multiple views.
More importantly, the number of constructed features can
be adaptively determined without being pre-defined.

2) A new fitness function based on accuracy and distance is
proposed in MFCGPE to enable the constructed features
to be accurate and discriminative when the number of
training samples is small. The new fitness function is able
to maximize the classification performance and the inter-
class distances of training samples, and minimize the intra-
class distances of training samples.

3) An ensemble is created using the features constructed by
MFCGPE from multiple views and using KNN to make
predictions for unseen test samples. Using ensemble for
classification can further improve the generalization perfor-
mance, particularly when the number of training samples
is small.

4) A new intelligent diagnosis approach, namely MFCGPE,
is developed to achieve effective fault diagnosis of rolling
bearings with the use of a small number of training
samples. MFCGPE can achieve better results than 19 com-
petitive methods on three datasets. Specifically, MFCGPE
can achieve a maximal and average accuracy of 100% and
above 99% on three fault datasets with only five training
samples per class.

The rest of this paper is organized as follows: Section II
briefly introduces the GP algorithm and reviews its appli-
cations on feature construction and fault diagnosis. Section
III describes the MFCGPE approach in detail. Section IV
designs the experiments. The experimental results are analyzed
and compared in Section V. Section VI further analyses
the proposed approach. Section VII presents conclusions and
future work.

II. BACKGROUND AND RELATED WORK

A. Genetic Programming (GP)

Unlike other EC techniques such as genetic algorithms
(GAs) that have a fixed-length representation, GP has a
variable-length representation [40]. An individual of GP is
typically represented using a tree-based structure, as shown
in Figure 1. This example tree/program consists of internal
nodes (the functions or operators selected from the function
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set) and leaf nodes (the arguments or constants selected from
the terminal set). This example tree can be mathematically
expressed as 5÷(y+8)+(2×x), where +, ×, and ÷ (protected
division, return 0 if the divisor is 0) are the internal nodes, and
x, y, 2, 5, and 8 are the leaf nodes. This equation can also be
treated as a newly constructed feature, where x and y are two
original features.

x2

÷ ×

+

8y

+5

Fig. 1. An example program of GP.

GP can automatically select functions from the function
set and terminals from the terminal set to evolve the best
trees for solving a task via an evolutionary process. Figure
2 shows the overall evolutionary process of GP. First, a
population of computer programs are randomly initialized
in the search space. Then, each individual (program) in the
population is evaluated using a fitness function and assigned
a fitness value. At each generation, a new population of
individuals are generated using genetic operators, i.e., Elitism,
Crossover, and Mutation operators. The Elitism operation is
to copy the best individuals from the current generation to the
next generation. A number of individuals are selected based
on their fitness values via Tournament selection to be used
as parents to generate new individuals using Crossover and
Mutation operators. The Crossover operation is to exchange
the subtrees of two parents to generate new offspring. The
Mutation operation is to randomly delete a subtree of the
parent and grow a new subtree from that node. The new
population of individuals are evaluated and evolved generation
by generation. When a termination criterion is satisfied, the
evolutionary process stops, and the best individual is obtained.

Start

End

Initial Population 

Fitness Function

Terminate

Best Individual

ElitismMutation

 Generate New Population 
Crossover

No

Yes

Fig. 2. Evolutionary process of GP.

B. GP for Feature Construction

In recent years, many GP based feature construction meth-
ods have been proposed, in which the arithmetic and logical
operators are usually used as the function set, and the low-
level features are usually used as the terminal set. Otero et al.
[41] used information gain ratio as the fitness function of GP
to construct features. Muharram et al. [42] comprehensively
compared four different fitness functions based on information
gain in GP for feature construction. Guo et al. [43], [44] used
the Fisher criteria and its improved version as the fitness func-
tion of GP. Neshatian et al. [45] proposed a multiple feature
construction method for symbolic learning classifiers, where
the constructed features are evaluated by a fitness function that
maximizes the purity of the class interval. The above methods
belong to the filter-based feature construction methods. Guo
et al. [36] proposed a method based on GP and KNN to
classify EEG signals, which achieved a classification accuracy
of 99% on one dataset. Bi et al. [37] proposed a GP method
combined with image-related operators and SVM for image
classification, which obtained better accuracy than the deep
learning methods on some datasets. Aslam et al. [38] combined
GP and KNN for automatic modulation classification, and the
method achieved better classification performance. The above
methods belong to the wrapper-based feature construction
methods. Tran et al. [46] developed a fitness function using the
classification accuracy and a distance measure to improve the
performance of the constructed features on high-dimensional
data classification tasks and discussed the impact of the
number of constructed features on classification accuracy. Ma
et al. [47] designed a hybrid fitness function that combined
information gain ratio and the error rate of a classification
algorithm, and proposed a feature construction strategy that
obtained multiple high-level features using a single GP.

C. GP for Fault Diagnosis

To the best of our knowledge, GP has rarely been applied
to fault diagnosis of mechanical equipment. In [48], GP was
used as a binary classifier for fault diagnosis of rolling bearing.
The classification performance of GP with the use of statistical
features, spectral features, and the combination of statistical
and spectral features are compared. The results showed that the
combined features achieved better fault classification accuracy.
Guo et al. [49] proposed a GP-based rolling bearing fault
diagnosis method, in which a fitness function based on Fisher
criteria was developed to enable GP to construct the high order
of moments of vibration signals as informative features. This
method used two classification algorithms for multi-class fault
classification. Xuan et al. [50] proposed a gear fault diagnosis
method that combines GP and SVM, where a distance measure
based fitness function was developed and the power spectral
features of vibration signals were used to construct high-level
features. These two methods only construct a single feature for
fault diagnosis, which may not be effective when the machine
working conditions become more complicated.

In summary, although these methods successfully show that
GP offers possibilities for dealing with fault diagnosis, there
are still some problems that need to be addressed. The GP
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based feature construction methods in [46], [47], [45] have
discussed the effect of the number of constructed features
on classification performance. However, these methods set the
number of constructed features according to prior knowledge
and multiple trials, therefore the adaptability of them is
poor. The GP based fault diagnosis method in [50], [48],
[49] only used the features of a single view for feature
construction. However, since the features of different views
have both internal relations and interval differences, using
only single view features may ignore the characteristics of the
samples. Moreover, these GP based fault diagnosis methods
use sufficient training data to construct features and perform
classification and do not consider the scenario of a small
number of training samples. In general, a small number of
training samples can not well represent the class distribution
information comprehensively and often leads to poor gen-
eralization performance. To address the above issues, this
paper proposes a new GP based fault diagnosis approach
(i.e., MFCGPE) to adaptively construct a flexible number
of informative features from multiple views for representing
sample comprehensively, and create an ensemble using these
constructed features for effective fault diagnosis with the use
of a small number of training samples.

III. THE PROPOSED APPROACH

In this section, the details of the MFCGPE fault diagnosis
approach will be introduced, including the algorithm overview,
the program structure, the function set, the terminal set, the
fitness function, and ensemble construction for fault diagnosis.

A. Overview of MFCGPE
Figure 3 shows the overall structure of MFCGPE to rolling

bearing fault diagnosis with a small number of training sam-
ples. First, the collected vibration signals of rolling bearings
are transformed into three different-view features by calculat-
ing the statistical values of time waveform and frequency spec-
trum. The 16 time-domain features (TDF), the 13 frequency-
domain features (FDF), and the combination of TDF and FDF
(named TFDF features) are represented by V iew1, V iew2,
and V iew3, respectively. Second, the transformed data set
is divided into the training set and the test set, and three
independent GPs are utilized to construct high-level features
of each single-view feature set, respectively. The program
structure and the function set used for feature construction
from different views are the same, but the terminal set is
different. Only the training set is used for the evolutionary
process of GP to construct high-level features that are expected
to have a small intra-class distance and a large inter-class
distance for effective fault diagnosis. Third, the constructed
features are provided as the inputs of classification algorithms
for fault diagnosis. We use the features constructed from each
view to feed three classifiers/KNNs individually, which are
combined via majority voting to form an ensemble to make a
good prediction for the unseen test set.

B. Program Structure
To enable MFCGPE to construct a flexible number of

high-level features, a new program structure with the input,

Training Set and Test Set with the Constructed Features
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Fig. 3. Overall structure of the MFCGPE fault diagnosis approach.

feature construction, feature combination, and output layers
are developed based on strongly-typed GP (STGP) [51]. These
layers are connected in a bottom-up manner. Each layer has a
specific function and type constraint. The input layer takes the
original features as inputs, which are the terminals of GP. The
feature construction layer transforms the original features into
high-level features. The feature combination layer combines
multiple constructed features into a vector to comprehensively
describe the sample. The output layer returns the constructed
feature vector as outputs for fault diagnosis. The tree depths
of the input and output layers are one, and those of the feature
construction and feature combination layers are automatically
adjusted according to the given task. Figure 4 shows the
program structure and an example program of MFCGPE,
respectively. This example program represents a feature vector
containing three constructed features. The detailed description
of the operators and the terminals will be described in the
following subsections.

C. Function Set

The function set of MFCGPE is composed of two types
of operators, i.e., the feature construction operators and the



IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, VOL.XX, NO.XX, MONTH 20XX 5

FC2
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Fig. 4. Program structure of MFCGPE (left) and an example program (right)
that can be evolved by MFCPGE.

feature combination operators. Table I lists the detailed infor-
mation of the function set. Four arithmetic operators including
+, −, ×, and ÷ are for feature construction, where ÷ is
protected by returning 0 if the divisor is 0. The inputs of +, −,
×, and ÷ operators are two features, and the output of them
is a new feature. It should be noted that their outputs/features
can be further used for feature construction. To achieve feature
combination, two new operators (FC2 and FCm) are designed
to combine multiple features into a vector, where the inputs
of FC2 are two features, and the inputs of FCm can be
one feature, one vector, or two vectors. The use of these
feature combination operators enables MFCGPE to adaptively
construct multiple high-level features without presetting the
number of constructed features.

TABLE I
FUNCTION SET OF GP

SYMBOL INPUT OUTPUT DESCRIPTION
+ 2 FEATURES 1 FEATURE ADDITION
− 2 FEATURES 1 FEATURE SUBTRACTION
× 2 FEATURES 1 FEATURE MULTIPLICATION

÷ 2 FEATURES 1 FEATURE
PROTECTED

DIVISION
FC2 2 FEATURES 1 VECTOR CONCATENATION

FCm
2 VECTORS OR

1 VECTOR/FEATURE
1 VECTOR CONCATENATION

D. Terminal Set

The terminal set of MFCGPE is composed of the low-level
features extracted from the vibration signals. The terminal
sets for feature construction from different views are different.
For V iew1 (only consider the time-domain characteristics of
rolling bearing signals), the terminal set contains 16 statistical
features T1∼T16, which are extracted through performing the
simple mathematical calculation on the amplitude of the raw
vibration signals [25]. Table II lists the terminal set used under
V iew1, where s(i) represents the time signal, and N represents
the number of the signal data points. T1∼T16 represent the
vibration signal’s mean value, standard deviation, square root
amplitude, absolute mean value, skewness, kurtosis, variance,
maximum value, minimum value, peak-to-peak value, wave-
form index, peak index, pulse index, margin index, skewness
index and kurtosis index, respectively.

TABLE II
TERMINAL SET CORRESPONDING TO V iew1

SYMBOL FORMULA SYMBOL FORMULA

T1
1
N

∑N
i=1 s(i) T9 min|s(i)|

T2

√
1

N−1

∑N
i=1[s(i)− T1]2 T10 T8 − T9

T3 ( 1
N

∑N
i=1

√
|s(i)|)2 T11

T2
T4

T4
1
N

∑N
i=1 |s(i)| T12

T8
F2

T5
1
N

∑N
i=1(s(i))

3 T13
T8
F4

T6
1
N

∑N
i=1(s(i))

4 T14
T8
T3

T7
1
N

∑N
i=1(s(i))

2 T15
T5

(
√
T7)3

T8 max|s(i)| T16
T6

(
√
T7)2

For V iew2 (only consider the frequency-domain charac-
teristics of rolling bearing signals), the terminal set contains
13 statistical features F1∼F13, which are extracted through
performing the mathematical calculation on the amplitude of
frequency spectrum that was obtained through Fast Fourier
Transform for the vibration signals [25]. Table III lists the
terminal set used under V iew2, where f (j) represents the
frequency spectrum of time signal s(i), M represents the
number of spectrum lines, and Aj represents the frequency
value of the jth spectrum line. F1 represents the energy of the
vibration signal in frequency-domain, F2∼F5 represent the
position variation of the main frequency band, and F6∼F13

represent the concentration and dispersion of the frequency
spectrum.

TABLE III
TERMINAL SET CORRESPONDING TO V iew2

SYMBOL FORMULA SYMBOL FORMULA

F1

∑M
j=1 f(j)

M
F8

∑M
j=1[f(j)−F1]

4

M(F6)2

F2

∑M
j=1(Ajf(j))∑M

j=1 f(j)
F9

√∑M
j=1[(Aj−F5)2f(j)]

M

F3

√∑M
j=1[A

2
jf(j)]∑M

j=1 f(j)
F10

F9
F2

F4

√∑M
j=1[A

4
jf(j)]∑M

j=1[A
2
jf(j)]

F11

∑M
j=1[(Aj−F2)

3f(j)]

M(F9)3

F5

∑M
j=1[A

2
jf(j)]√

[
∑M

j=1(A
4
jf(j))][

∑M
j=1 f(j)]

F12

∑M
j=1[(Aj−F2)

4f(j)]

M(F9)4

F6

∑M
j=1[f(j)−F1]

2

M−1
F13

∑M
j=1[

√
|Aj−F2|f(j)]

M
√
F9

F7

∑M
j=1[f(j)−F1]

3

M(
√
F6)3

− −

For V iew3 (considering both the time-domain and
frequency-domain characteristics of rolling bearing signals),
the terminal set contains 29 features (TF1∼TF29) composed
by the features of V iew1 and V iew2, where the features
TF1∼TF16 are equal to the features T1∼T16 in V iew1, and
the features TF17∼TF29 are equal to the features F1∼F13 in
V iew2. There are two reasons for using TDF features and
FDF features to form the multi-view features. One is that
the extraction of TDF and FDF features is simple statistical
calculations, while the extraction of the time-frequency do-
main features typically needs complicated signal processing
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operations and manual participation. The other is that [48]
shows that using the combination of the TDF and FDF
features for feature construction is effective for constructing
new features. Different from most of the existing works, the
proposed method constructs features from these three views,
individually, which aims to generate a group of effective and
diverse features to comprehensively describe a sample. The
effectiveness and diversity of the constructed features can also
improve the high generalization performance of the ensemble,
which will be described in the later subsection.

E. Fitness Function
An effective fitness function is crucial for guiding GP to

construct high-level features for fault diagnosis. When the
number of training samples is small, the features constructed
by GP can easily achieve good classification performance on
the training set, but poor generalization performance on the
test set. To address this issue, a new fitness function based
on the classification accuracy and the distance measure of the
training samples is proposed to guide the search of MFCGPE.
To calculate the diagnosis accuracy, KNN is used to perform
classification based on the constructed features. The reason
for using KNN is that it is a simple classification algorithm,
easy to implement, and treats each feature equally without
any feature weighting or selection [22], [52]. With the use
of KNN, MFCGPE can automatically construct discrimina-
tive features and avoid redundant or irrelevant features. The
distance measure is to minimize the intra-class distance and
maximize the inter-class distance of the training samples based
on the constructed features. Using such a distance measure will
group the samples in the same class and enlarge the differences
of the samples in different classes, which potentially improves
the discriminability of the constructed features. This also helps
to improve the effectiveness of KNN as it is based on distance.
Based on the above analysis, the new fitness function to be
maximised is formulated as follows.

Fit = (Acc + Dist)/2 (1)

where Acc represents the diagnosis accuracy of KNN using the
constructed features and Dist represents the distance measure.
Only the training set is used in the fitness evaluation step,
and the constructed features are transformed into the range of
[0, 1] through the min-max normalization method. The Acc is
calculated using the 5-fold cross-validation scheme. That is,
the new generated features and labels of the training set are
divided into 5 folds, evenly. Each time, one fold is used as
the sub-test set, and the other two folds are used as the sub-
training set. The average value of the three sub-test sets is set
as the diagnosis accuracy.

The Dist is calculated according to Equations (2)-(5),
which evaluate the distance of the training samples with the
constructed features. The calculation of Dist is based on the
Euclidean distance. For the given samples Xk={xk1, xk2, ...,
xkn} and Xl={xl1, xl2, ..., xln}, the Euclidean distance be-
tween them can be calculated as Equation (2), where xko and
xlo represent the features of samples Xk and Xl, respectively,
and n is the number of features. The calculation of the intra-
class and inter-class distances is based on Equation (3) and

Equation (4), where Ω represents the samples in one single
class, and N is the number of samples in the Ω class. Equation
(5) is the calculation of Dist, where the sigmoid function is
used to transform the difference value of the inter-class and
intra-class distances into the range of [0, 1].

d(Xk, Xl) =

√√√√ n∑
o=1

(xko − xlo)2 (2)

Dintra(Ωi) =
1

NiNi

Ni∑
k=1

Ni∑
l=1

d(X
(i)
k , X

(i)
l ) (3)

Dinter(Ωi,Ωj) =
1

NiNj

Ni∑
k=1

Nj∑
l=1

d(X
(i)
k , X

(j)
l ) (4)

Dist =
1

1 + e−(min(Dinter)−max(Dintra))
(5)

The proposed fitness function optimizes the classification
accuracy and the distances of the training samples, simulta-
neously. When the fitness value approaches one, it indicates
that the features constructed by GP have the best classification
performance and the training samples have a small intra-class
distance and a large inter-class distance.

F. Ensemble for Fault Diagnosis

The MFCGPE system is able to find the three best GP
trees/programs that construct features from different views.
Since the high-level features are constructed from different
views, they are diverse and effective. To effectively use the
constructed features, an ensemble is created for fault diagnosis.
Consistent with the fitness evaluation process, the ensemble
uses three KNNs as the base classifiers, and each KNN uses
the features constructed from a single view. The overall fault
diagnosis system using ensemble is illustrated in Figure 5.

KNN

KNN

KNN

  Majority 
Voting

View1 
Features

View3 
Features

 Raw
Signal

 GP 
 Construct Features 

View2 
Features

 GP 
 Construct Features 

 GP 
 Construct Features 

  Final
Diagnosis

Fig. 5. Architecture of ensemble fault diagnosis system.

The training set (including the transformed feature sets from
three different views and the corresponding class labels) are
fed into three KNNs, and these three KNNs are used as
base classifiers of an ensemble. This ensemble will have high
generalization performance since the inputs are the features
constructed from different views. This constructed ensemble
is applied to predict the class labels for the unseen samples
in the test set. In the process, the majority voting algorithm
is employed because it is a simple and common method to
comprehensively consider the results obtained by the multiple
base classifiers [53]. For a test sample, among the class
labels/fault types obtained by three KNNs, the fault type with
the largest number of votes is chosen as the final fault type.
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IV. EXPERIMENTAL DESIGN

A. Dataset Description

The mechanical equipment typically operates normally, and
the failure data that can be collected is limited. Collecting a
large number of labeled samples requires high cost and a long
period of time. Therefore, the goal of this paper is to deal with
fault diagnosis using the limited number of training samples.
In the experiments, three datasets with a small number of
training samples are employed to evaluate the effectiveness of
MFCGPE. In each dataset, only five samples of each running
condition are randomly selected as the training set, and the
remaining samples are used as the test set. The three datasets
are described as follows.

1) NCEPU [25]: It is a bearing fault dataset collected by
North China Electric Power University (NCEPU) and contains
vibration signals of six fault types. Figure 6 shows the used
test rig of NCEPU. The six rolling bearing running conditions
are the normal state (NOR), inner ring fault (IRF ), outer
ring fault (ORF ), rolling element fault (REF ), inner &
outer ring compound fault (IOCF ), and rolling element &
outer ring compound fault (ROCF ), which are simulated
by manufacturing defects on normal bearings using electrical
discharge machining (EDM) technology. All vibration signals
are collected with a sampling frequency of 12,000 Hz. The
first 102,400 data points of vibration signals under each
running condition are divided into 50 samples on average and
there is no overlap between each sample. Table IV lists the
detailed information of the NCEPU dataset. Figure 7 shows the
time domain waveform of vibration signals under six running
conditions in NCEPU.

Fig. 6. NCEPU test rig.

TABLE IV
DESCRIPTION OF THE NCEPU DATASET

CLASS
LABEL

RUNNING
CONDITION

TRAINING
SAMPLES

TEST
SAMPLES

1 NORMAL 5 45
2 INNER RING FAULT 5 45
3 OUTER RING FAULT 5 45
4 ROLLING ELEMENT FAULT 5 45

5
INNER AND OUTER

RING COMPOUND FAULT
5 45

6
ROLLING ELEMENT AND OUTER

RING COMPOUND FAULT
5 45

2) CWRU [54]: It is a bearing fault dataset collected
by Case Western Reserve University (CWRU) and contains
vibration signals of ten fault types and fault degrees. Figure
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Fig. 7. Time domain waveform of vibration signals under six running
conditions in NCEPU.

8 shows the used test rig of CWRU. All faults are generated
by manufacturing defects on the inner ring, outer ring, and
rolling element surfaces using EDM, and the same fault
category with three defect diameters (0.007, 0.014, and 0.021
inches, respectively). The ten different rolling bearing running
conditions are the normal state (NOR), three kinds of inner
ring fault (IRF07, IRF14, and IRF21), three kinds of outer ring
fault (ORF07, ORF14, and ORF21), and three kinds of rolling
element fault (REF07, REF14, and REF21), respectively. IRF,
ORF, and REF indicate inner ring fault, outer ring fault, and
rolling element fault, respectively. 07, 14, and 21 indicate
that the defect diameter is 0.007, 0.014, and 0.021 inches,
respectively. The vibration signals of driver-end bearing under
1,797 r/min are collected with a sampling frequency of 12,000
Hz. Similar to the NCEPU dataset, the first 102,400 data points
of vibration signals under each running condition are divided
into 50 samples on average. Five samples of each running
condition are randomly selected to form the training set, and
the remaining samples are used as the test set. Table V lists the
detailed information of the CWRU dataset. Figure 9 shows the
time domain waveform of vibration signals under ten running
conditions in CWRU.

Fig. 8. CWRU test rig.

3) XJTU [55]: It is a run-to-failure bearing fault dataset
collected by Xi’an Jiaotong University (XJTU), in which
the reason for fault occurrence is the natural damage as the
running time increases. Figure 10 shows the used test rig of
XJTU. In the experiments, the vibration signals of the test
bearings are collected with a sampling frequency of 25,600 Hz
until the bearing fails, and the time interval for each sampling
is one minute. The vibration signals of the last two recorded
data file of the Bearing 2 1, Bearing 2 2, and Bearing 2 3
datasets are used as the analyzed data. The fault types are inner
ring fault (IRF ), outer ring fault (ORF ), and cage fault (CF ).
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TABLE V
DESCRIPTION OF THE CWRU DATASET

CLASS
LABEL

RUNNING
CONDITION

DEFECT
SIZE (IN)

TRAINING
SAMPLES

TEST
SAMPLES

1 NORMAL 0 5 45
2 INNER RING FAULT 0.007 5 45
3 INNER RING FAULT 0.014 5 45
4 INNER RING FAULT 0.021 5 45
5 OUTER RING FAULT 0.007 5 45
6 OUTER RING FAULT 0.014 5 45
7 OUTER RING FAULT 0.021 5 45
8 ROLLING ELEMENT FAULT 0.007 5 45
9 ROLLING ELEMENT FAULT 0.014 5 45

10 ROLLING ELEMENT FAULT 0.021 5 45
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Fig. 9. Time domain waveform of vibration signals under ten running
conditions in CWRU.

The signals of the first two recorded data file of the Bearing
2 1 dataset is used as the normal (NOR) vibration signals for
analysis. Every vibration signal contains 32,768 data points
and is divided into 32 samples on average for conducting
the experiments. Each sample contains 2,048 data points. Five
samples under each running condition are randomly selected
to form the training set, and the remaining samples are used
as the test set.Table VI lists the detailed information of the
XJTU dataset. Figure 11 shows the time domain waveform of
vibration signals under four running conditions in XJTU.

TABLE VI
DESCRIPTION OF THE XJTU DATASET

CLASS
LABEL

RUNNING
CONDITION

TRAINING
SAMPLES

TEST
SAMPLES

1 NORMAL 5 27
2 INNER RING FAULT 5 27
3 OUTER RING FAULT 5 27
4 CAGE FAULT 5 27

B. Comparison Methods
To verify the effectiveness of MFCGPE, four categories

of competitive methods, i.e., 19 methods, are employed for

Fig. 10. XJTU test rig.
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Fig. 11. Time domain waveform of vibration signals under four running
conditions in XJTU.

comparisons. The first category includes five different clas-
sification algorithms, i.e., KNN, SVM, Naive Bayes (NB),
logistic regression (LR), and multilayer perceptron (MLP),
which use raw signals amplitude to train the classifiers for fault
classification. The second category are KNN using five man-
ually crafted features, i.e., TDF, FDF, multi-domain features
(MDF) [25], modified multi-scale symbolic dynamic entropy
(MMSDE) [14], and improved multi-scale dispersion entropy
(IMDE) [15], for fault classification. The TDF and FDF
features have been described in Section III-D. The numbers
of features in MDF, MMSDE, and IMDE are 37, 20, and 20,
respectively. The comparisons aim to investigate whether the
features constructed by MFCGPE are more effective for fault
diagnosis than these manually crafted features.

The third category contains six GP based methods using
TDF, FDF, and TFDF (described in Section III-D) as the
input features to construct high-level features. The constructed
features are used as the inputs of the KNN classifier for fault
classification. Two types of GP based methods are used, i.e.,
the GPS methods (using GP to construct a single feature) and
the GPM methods (using GP to construct multiple features).
The fitness function of these methods is the same as MFCGPE.
The comparisons can investigate the effect of the number of
constructed features on diagnosis accuracy. The GPS/GPM-
TDF, GPS/GPM-FDF, and GPS/GPM-TFDF methods use the
TDF, FDF, and TFDF features for feature construction, respec-
tively. According to [46], the number of features constructed
by the GPM based methods is the same as the number of the
classes in the dataset. For example, GPM-TDF, GPM-FDF,
and GPM-TFDF construct 10 new features for classifying
the CWRU dataset with 10 classes. The comparisons aim to
investigate whether MFCGPE can outperform other GP based
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feature construction methods that construct features.
The fourth category of the comparison methods are three

ensemble diagnosis methods (i.e., OFE, GPSE, and GPME).
These methods use three KNNs as base classifiers and the
majority voting algorithm to build an ensemble. In OFE
(i.e., ensemble using the original features), the TDF, FDF,
and TFDF features are fed into three KNNs, respectively.
In GPSE (i.e., ensemble using the features constructed by
GPS), the features constructed by GPS-TDF, GPS-FDF, and
GPS-TFDF are fed into three KNNs to build an ensemble.
In GPME (i.e., ensemble using the features constructed by
GPM), the features constructed by GPM-TDF, GPM-FDF,
and GPM-TFDF are fed into three KNNs, respectively. The
comparisons aim to investigate whether MFCGPE can beat
the ensemble diagnosis methods that use the original features
and the features constructed by GP.

C. Parameter Settings

In MFCGPE, the GP related parameters are common set-
tings and refer to those in [56]. The population size and
the maximal number of generations are set as 100 and 50,
respectively. The rates of crossover, mutation, and elitism
are set as 0.8, 0.19 and 0.01, respectively. The tree depth
is between 2-6. The tree generation method is ramped half-
and-half. The tournament selection with size 5 is used to
select parents for crossover and mutation operations. The
parameters of the GP based comparison methods are the same
as MFCGPE.

The GP based methods are implemented using DEAP [57]
and the classification algorithms are implemented using scikit-
learn [58]. The number of the neighbors in KNN is set
as 3 according to [22]. The parameters in the classification
algorithms are the default values of the scikit-learn package.
The parameter values of the methods using manually extracted
features are set according to [14], [15], [25]. Each method
has been executed 30 independent runs on each dataset with
different random seeds. The evolutionary process of GP and
the classifier training step only use the training set. The fault
diagnosis results of the test sets are reported.

V. RESULTS AND DISCUSSIONS

This section discusses and analyses the fault diagnosis
results obtained by MFCGPE and the 19 comparison methods
on the three different datasets with a small number of training
samples. Table VII lists the classification accuracy of the 20
methods, including the maximum (Max) value, average (Avg)
value and standard deviation (Std) of the accuracy of the 30
runs, where the best results of each dataset are highlighted
in bold. Wilcoxon rank-sum test with a 5% significance level
is employed to evaluate the significant difference in perfor-
mance improvement of MFCGPE compared to a method. In
Table VII, the “+” symbol indicates that the performance of
MFCGPE is significantly better than the comparison method.
The summary of the significance test results on each dataset
is listed in the last row of Table VII.

Rows 1-5 of Table VII list the classification results of the
five traditional classifiers using raw signals amplitude (RSA).

It can be seen that the diagnosis accuracy of these methods is
very low. On the NCEPU and CWRU datasets, MLP achieves
better results than KNN, LR, SVM, and NB. Specifically,
MLP achieves an average accuracy of 22.01% on NCEPU and
of 21.92% on CWRU. On the XJTU dataset, NB achieves a
maximal and average accuracy of 52.78%, which is better than
other classifiers. Compared with these five methods, MFCGPE
achieves much higher accuracy, i.e., over 99%, on the three
datasets. The results show that constructing high-level features
is very important for fault diagnosis of rolling bearings.

Rows 6 to 10 of Table VII list the classification results of the
KNN classifier using five different types of manually crafted
features (i.e., TDF, FDF, MDF, MMSDE, and IMDE). It can be
seen that the accuracy of these five methods is higher than the
KNN, LR, SVM, NB, and MLP methods using raw signals
amplitude. Among these five methods using the manually
crafted features, the IMDE method achieves the best results
(the maximal and average diagnosis accuracy are 91.11%)
on NCEPU, the MMSDE method achieves the best results
(the maximal and average diagnosis accuracy are 92.67%)
on CWRU, and the FDF method achieves the best results
(the maximal and average diagnosis accuracy are 97.22%) on
XJTU. The results show that it is necessary to extract a set
of effective features according to the datasets to perform fault
diagnosis because the performance of the manually extracted
features varies with datasets. Compared with these methods,
MFCGPE achieves much better performance by automatically
constructed multi-view high-level features and building an
ensemble for fault diagnosis. The adaptability of MFCGPE
is much higher than these five methods as it achieves the best
results on all the three datasets.

Rows 11 to 13 of Table VII are the classification results of
the GP based comparison methods for constructing a single
feature, i.e., GPS-TDF, GPS-FDF, and GPS-TFDF. Among
these methods, GPS-TFDF achieves the best results on all
three datasets by obtaining an average accuracy of 90.73% on
NCEPU, 90.17% on CWRU and 96.67% on XJTU. Compared
with these three methods, MFCGPE achieves better and stable
classification performance. The results show that only con-
structing one high-level feature may not be effective for multi-
class fault diagnosis. Compared with these methods, MFCGPE
is able to construct a flexible number of effective features from
every single view for fault diagnosis.

Rows 14 to 16 of Table VII are the classification re-
sults of the GP based comparison methods that construct
multiple features for fault diagnosis, i.e., GPM-TDF, GPM-
FDF, and GPM-TFDF. Among these three methods, GPM-
TFDF achieves better results on all three datasets. Specif-
ically, GPM-TFDF achieves an average diagnosis accuracy
of 94.56%, 96.16%, and 98.21% on NCEPU, CWRU and
XJTU, respectively. Compared with the GPS-based methods,
the GPM-based methods achieve higher average accuracy and
smaller standard deviation values. These results indicate that
using multiple constructed high-level features is more effective
than using a single constructed high-level feature to improve
diagnosis performance. Compared with these three methods,
MFCGPE achieves better performance on the three datasets.
MFCGPE builds an effective ensemble using the features
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TABLE VII
DIAGNOSIS ACCURACY (%) OF MFCGPE AND THE COMPARISON METHODS ON THE NCEPU, CWRU, AND XJTU DATASETS

ROW METHOD NCEPU CWRU XJTU
MAX AVG±STD MAX AVG±STD MAX AVG±STD

1 RSA+KNN 16.67 16.67±0.00+ 10.00 10.00±0.00+ 25.00 25.00±0.00+
2 RSA+LR 17.04 17.04±0.00+ 21.33 21.33±0.00+ 28.70 28.70±0.00+
3 RSA+SVM 16.67 16.67±0.00+ 16.44 16.44±0.00+ 28.70 28.70±0.00+
4 RSA+NB 17.41 17.41±0.00+ 23.33 23.33±0.00+ 52.78 52.78±0.00+
5 RSA+MLP 31.85 22.01±4.24+ 32.22 21.92±1.10+ 37.96 31.45±3.26+
6 TDF 79.26 79.26±0.00+ 76.67 76.67±0.00+ 87.96 87.96±0.00+
7 FDF 82.96 82.96±0.00+ 83.56 83.56±0.00+ 97.22 97.22±0.00+
8 MDF 88.15 88.15±0.00+ 90.22 90.22±0.00+ 75.93 75.93±0.00+
9 MMSDE 87.78 87.78±0.00+ 92.67 92.67±0.00+ 83.33 83.33±0.00+

10 IMDE 91.11 91.11±0.00+ 85.78 85.78±0.00+ 82.41 82.41±0.00+
11 GPS-TDF 90.74 87.83±2.76+ 88.89 84.62±2.56+ 91.67 88.22±3.71+
12 GPS-FDF 92.59 89.42±3.78+ 91.78 87.52±3.08+ 99.07 96.45±2.36+
13 GPS-TFDF 94.81 90.73±3.53+ 93.78 90.17±2.91+ 100.0 96.67±3.37+
14 GPM-TDF 94.44 92.37±1.94+ 96.22 93.37±2.42+ 95.37 93.09±2.98+
15 GPM-FDF 95.92 93.30±2.17+ 97.11 95.34±1.58+ 100.0 97.87±2.36+
16 GPM-TFDF 97.03 94.56±2.35+ 97.56 96.16±1.76+ 100.0 98.21±1.97+
17 OFE 89.25 89.25±0.00+ 90.44 90.44±0.00+ 95.37 95.37±0.00+
18 GPSE 95.55 93.84±1.56+ 94.46 92.81±1.45+ 100.0 98.37±1.81+
19 GPME 98.51 97.47±1.12+ 98.45 97.65±0.85+ 100.0 99.02±1.09+
20 MFCGPE 100.0 99.56±0.30 100.0 99.23±0.67 100.0 99.61±0.26
21 OVERALL 19+ 19+ 19+

constructed from multiple views, which allows it to obtain
higher generalization performance than these methods using a
single classifier.

Rows 17 to 19 of Table VII are the classification results
of the ensemble diagnosis methods, i.e., OFE, GSE, and
GPME. It can be found that on the NCEPU, CWRU, and
XJTU datasets, the diagnostic performance of OFE, GPSE,
and GPME is ranked the third, the second, and the first, respec-
tively. Compared with these three methods, MFCGPE achieves
higher average accuracy and smaller standard deviation values.
The reason is that MFCGPE has a new program structure,
function set, terminal set, and fitness function, which allow
it to construct more discriminative features and build a more
effective ensemble to obtain better diagnosis accuracy.

Row 20 and Row 21 of Table VII lists the classification
results and the significance test results of the MFCGPE
approach, respectively. On the NCEPU, CWRU, and XJTU
dataset, MFCGPE achieves the maximal accuracy of 100%
and the average accuracy of above 99%. The results of
the significance tests show that the diagnosis performance
of MFCGPE is significantly better than the 19 comparison
methods on the three datasets.

In summary, the results show that MFCGPE is able to
achieve excellent fault diagnosis performance on three datasets
with a small number of training samples. MFCGPE can adap-
tively construct a flexible number of features for fault diagno-
sis, which can not only achieve a comprehensive description
of the raw signal but also avoid redundancy and information
interference. The fitness function based on accuracy and
distance enables MFCGPE to construct new effective features
that achieve a small intra-class distance and a large inter-
class distance of the training samples, which can improve the
generalization performance on the unseen test set. MFCGPE
constructs multiple high-level features from different views,
individually, and constructs an effective ensemble based on

these constructed features through the majority voting, which
further improves the effectiveness of the diagnostic approach
and avoids the overfitting issue caused by using a small
number of training samples. Thus, MFCGPE is a practical
and promising approach to engineering applications.

VI. FURTHER ANALYSIS

This section further analyses the evolved GP tree/models,
the features constructed by GP from different views, and the
constructed ensemble to provide insights into why the new
approach is effective.

A. Example Trees/Models

Figure 12 shows the best trees/models evolved by MFCGPE
from the three different views on the NCEPU dataset, where
the white oval nodes are the feature combination operators,
the white circle nodes are the feature construction operators,
and the orange, blue, and pink rectangle nodes are the features
of V iew1, V iew2, and V iew3, respectively.

As it can be seen from Figure 12, for V iew1, six distin-
guished features among the input 16 features are selected
to construct four high-level features. For V iew2, six distin-
guished features among the 13 input features are selected
to construct four high-level features. For V iew3, five dis-
tinguished features among the 29 input features are selected
to construct three high-level features. This indicates that
MFCGPE can automatically select the useful features and
determine the number of constructed features, which avoid
information interference and feature redundancy. The depths
of the trees evolved from V iew1, V iew2, and V iew3 are
5, 7, and 3, respectively, which indicates that MFCGPE can
adaptively evolve the optimal variable-length models with the
use of the time-domain, frequency-domain, time&frequency-
domain characteristics of vibration signals. The above analysis
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Fig. 12. Example trees evolved by MFCGPE on the NCEPU dataset.

shows that MFCGPE has the ability to learn effective and
diverse features from multi-view input features to capture
different patterns of the vibration signal, which is beneficial
in describing data characteristics comprehensively.

B. Visualization of the GP-Constructed Features

To better demonstrate that the evolved models/trees shown
in Figure 12 are effective for fault diagnosis, the original
features and the newly constructed features are visualized
for comparisons. The features of the samples in the test
set are visualized by using t-distributed stochastic neighbor
embedding (t-SNE) [59] method. Figure 13 shows the visual-
ization results, where six colored points represent six running
conditions of the rolling bearing, i.e., normal (NOR), inner
ring fault (IRF ), outer ring fault (ORF ), rolling element
fault (REF ), inner & outer ring compound fault (IOCF ),
and rolling element & outer ring compound fault (ROCF ).

As shown in Figure 13(a), using the original features of
V iew1 for visualization, the points in different classes are
all overlapping; when using the original features of V iew2

and V iew3 for visualization, the points in the NOR class
are clustered separately, but the points in other classes are
also overlapping. These visualization results indicate that the
original features of vibration signals in different running
conditions cannot effectively separate the fault types into
different classes to achieve a high diagnostic accuracy. As
shown in Figure 13(b), using the features constructed from
V iew1 for visualization, few points in the NOR, IRF , and
REF classes are overlapping, and the other colored points
are gathered together and do not overlap. Using the features
constructed from V iew2 for visualization, only a few points
in the IOCF and ROCF classes are overlapping. Using
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Fig. 13. Feature visualization on the NCEPU dataset using t-SNE.

the features constructed from V iew3 for visualization, only
a few points in the ORF and ROCF classes are overlapping.
Compared with the original features, these newly constructed
features have a good similarity among the same class and have
a big difference between different classes. These visualization
results indicate that the constructed features can effectively
represent the vibration signals in different running conditions,
which makes fault diagnosis simpler and more accurate.

C. Diagnosis Results Using the GP-Constructed Features and
the Constructed Ensemble

To analyze the effectiveness of the constructed features of
Figure 13(b) and the built ensemble, Figure 14 shows their
diagnosis results and the results of the built ensemble, where
the blue box represents the true label of the sample, the red
asterisks represent the predicted label of the sample, and the
class labels 1, 2, 3, 4, 5, and 6 represent the NOR, IRF , ORF,
REF , IOCF , and ROCF running conditions, respectively.
The overlap of boxes and asterisks indicates that the diagnosis
is correct. No-overlapping of boxes and asterisks indicates that
the diagnosis is wrong.

It can be seen from Figure 14(a) that using the features
constructed from V iew1 for fault diagnosis will cause seven
samples to be misclassified, where two samples in the IRF
class are identified as the NOR class and five samples in
the REF class are identified as the IRF class. Figure 14(b)
shows the diagnosis results of using the features constructed
from V iew2. It shows that two types of compound faults are
misclassified, i.e., two samples in the IOCF class are classi-
fied into the ROCF class and three samples in the ROCF
class are identified as the IOCF class. Figure 14(c) shows the
diagnosis results of using the features constructed from V iew3,
where three samples in the ORF class are identified as the
ROCF class. The diagnosis accuracy of using the TDF, FDF,
and TFDF based constructed features are 97.40%, 98.14%
and 98.88%, respectively. The ensemble diagnosis accuracy
is obtained by integrating the three diagnosis results via the
majority voting method and shown in Figure 14(d), in which
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(d) Diagnosis results of using the con-
structed ensemble

Fig. 14. Diagnosis results on the NCEPU dataset using the constructed
features of different views and the constructed ensemble.

no samples are misclassified. Obviously, the ensemble strategy
improves the diagnosis accuracy.

By analyzing the best models evolved by MFCGPE, the
feature construction process is clearly displayed. In addition,
the visualization results and the diagnosis results of the newly
constructed features are demonstrated for interpretability. Ow-
ing to the program structure and the new fitness function,
MFCGPE constructs a flexible number of diverse and effec-
tive high-level features from different views. The constructed
features can make the classification of different fault types
easier and more accurate. Owing to the ensemble diagnosis
strategy, MFCGPE constructs multi-view features and gains a
higher diagnosis accuracy by using an ensemble built from the
features constructed from different views.

VII. CONCLUSIONS

The goal of this paper was to develop a new GP-based
approach to achieving effective fault types diagnosis of rolling
bearings using a small number of training samples. This goal
has been successfully achieved by developing the MFCGPE
approach. A new GP program structure, a function set, and a
terminal set were developed to enable MFECPE to construct
a flexible number of high-level features from three different
views of features. A new fitness function based on the mea-
sures of accuracy and distance was developed to enable these
newly constructed features to be accurate and discriminative.
To improve the diagnosis performance, an ensemble classifier
was created by using constructed features from multiple views
and using KNN. With these designs, MFCGPE can not only
automatically select and construct informative and discrimina-

tive features from different views but also build an effective
ensemble to achieve a high generalization performance.

The effectiveness of MFCGPE was evaluated on three
rolling bearing fault datasets and compared with the 19 com-
petitive methods. The results showed that MFCGPE achieved
the best diagnosis accuracy on the three datasets among all
the methods. The highlight of MFCGPE was that multiple
discriminative features were automatically constructed using
MFCGPE, and the ensemble diagnosis can address the issue
of poor generalization of the diagnosis model caused by using
a small number of training samples.

This paper shows that the proposed MFCGPE approach is
effective for fault diagnosis of rolling bearings. In addition
to fault diagnosis, remaining life prediction can also help to
analyze rolling bearing degradation. In the future, we will
investigate how GP is used to construct the health index to
predict the remaining life of the rolling bearing.
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